Yi-Hsien Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2793468/publications.pdf Version: 2024-02-01

YI-HSIEN LEE

#	Article	IF	CITATIONS
1	Near-field spectroscopic imaging of exciton quenching at atomically sharp MoS ₂ /WS ₂ lateral heterojunctions. Nanoscale, 2022, , .	5.6	1
2	Single-Photon Emission from Rewritable Nanoimprinted Localized Emitter Arrays in Atomically Thin Crystals. ACS Photonics, 2022, 9, 752-757.	6.6	1
3	Scalable Moiré Lattice with Oriented TMD Monolayers. Nanoscale Research Letters, 2022, 17, 34.	5.7	2
4	Visualization of Band Shifting and Interlayer Coupling in W _{<i>x</i>} Mo _{1–<i>x</i>} S ₂ Alloys Using Near-Field Broadband Absorption Microscopy. ACS Nano, 2022, , .	14.6	1
5	Tuning of Two-Dimensional Plasmon–Exciton Coupling in Full Parameter Space: A Polaritonic Non-Hermitian System. Nano Letters, 2021, 21, 2596-2602.	9.1	21
6	Nonlinear valley phonon scattering under the strong coupling regime. Nature Materials, 2021, 20, 1210-1215.	27.5	32
7	Lineshape characterization of excitons in monolayer WS ₂ by two-dimensional electronic spectroscopy. Nanoscale Advances, 2020, 2, 2333-2338.	4.6	7
8	Epitaxial Aluminum Surface-Enhanced Raman Spectroscopy Substrates for Large-Scale 2D Material Characterization. ACS Nano, 2020, 14, 8838-8845.	14.6	36
9	Delayed Charge Recombination by Openâ€Shell Organics: Its Application in Achieving Superb Photodetectors with Broadband (400–1160 nm) Ultrahigh Sensitivity and Stability. Advanced Optical Materials, 2020, 8, 1902179.	7.3	7
10	Selective Growth of WSe2 with Graphene Contacts. Nanoscale Research Letters, 2020, 15, 61.	5.7	6
11	Epitaxial aluminum plasmonics covering full visible spectrum. Nanophotonics, 2020, 10, 627-637.	6.0	13
12	Tunable Moiré Superlattice of Artificially Twisted Monolayers. Advanced Materials, 2019, 31, 1901077.	21.0	27
13	Monolayer Stacking: Tunable Moiré Superlattice of Artificially Twisted Monolayers (Adv. Mater.) Tj ETQq1 1 0.7	784314 rg 21.0	BT ₂ /Overlock
14	Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides. Nature Physics, 2019, 15, 228-232.	16.7	68
15	Monolayer Semiconductors: Electron Field Emission of Geometrically Modulated Monolayer Semiconductors (Adv. Funct. Mater. 7/2018). Advanced Functional Materials, 2018, 28, 1870046.	14.9	1
16	Monolayer Multijunctions: Synthesis of Inâ€Plane Artificial Lattices of Monolayer Multijunctions (Adv.) Tj ETQq0	0 Q rgBT /0	Dverlock 10 T
17	Synthesis of Inâ€Plane Artificial Lattices of Monolayer Multijunctions. Advanced Materials, 2018, 30,	21.0	35 _

18 Electron Field Emission of Geometrically Modulated Monolayer Semiconductors. Advanced Functional Materials, 2018, 28, 1706113.

14.9 23

YI-HSIEN LEE

#	Article	IF	CITATIONS
19	Dipole-Aligned Energy Transfer between Excitons in Two-Dimensional Transition Metal Dichalcogenide and Organic Semiconductor. ACS Photonics, 2018, 5, 100-104.	6.6	29
20	Observation of Exciton–Exciton Interaction Mediated Valley Depolarization in Monolayer MoSe ₂ . Nano Letters, 2018, 18, 223-228.	9.1	39
21	Controlled Lowâ€Frequency Electrical Noise of Monolayer MoS ₂ with Ohmic Contact and Tunable Carrier Concentration. Advanced Electronic Materials, 2018, 4, 1700340.	5.1	14
22	A gate-free monolayer WSe2 pn diode. Nature Communications, 2018, 9, 3143.	12.8	108
23	Plasmonic Enhancement and Manipulation of Optical Nonlinearity in Monolayer Tungsten Disulfide. Laser and Photonics Reviews, 2018, 12, 1800188.	8.7	64
24	Large, valley-exclusive Bloch-Siegert shift in monolayer WS ₂ . Science, 2017, 355, 1066-1069.	12.6	102
25	Photoresponse of an Organic Semiconductor/Two-Dimensional Transition Metal Dichalcogenide Heterojunction. Nano Letters, 2017, 17, 3176-3181.	9.1	97
26	Toward a Quantitative Understanding of the Reduction Pathways of a Salt Precursor in the Synthesis of Metal Nanocrystals. Nano Letters, 2017, 17, 334-340.	9.1	87
27	Strong and Broadly Tunable Plasmon Resonances in Thick Films of Aligned Carbon Nanotubes. Nano Letters, 2017, 17, 5641-5645.	9.1	42
28	Autocatalytic surface reduction and its role in controlling seed-mediated growth of colloidal metal nanocrystals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13619-13624.	7.1	64
29	Coherent Plasmon and Phonon-Plasmon Resonances in Carbon Nanotubes. Physical Review Letters, 2017, 118, 257401.	7.8	41
30	Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton. Nature Communications, 2017, 8, 35.	12.8	32
31	Microcavity enhanced second harmonic generation in 2D MoS_2. Optical Materials Express, 2016, 6, 2360.	3.0	54
32	Parallel Stitching of 2D Materials. Advanced Materials, 2016, 28, 2322-2329.	21.0	195
33	Observation of Intervalley Biexcitonic Optical Stark Effect in Monolayer WS ₂ . Nano Letters, 2016, 16, 7421-7426.	9.1	49
34	Design, Modeling, and Fabrication of Chemical Vapor Deposition Grown MoS ₂ Circuits with E-Mode FETs for Large-Area Electronics. Nano Letters, 2016, 16, 6349-6356.	9.1	142
35	Ultrahigh Raman Enhancement on Monolayer MoS ₂ . ACS Photonics, 2016, 3, 1164-1169.	6.6	167
36	Phase-driven magneto-electrical characteristics of single-layer MoS ₂ . Nanoscale, 2016, 8, 5627-5633.	5.6	26

YI-HSIEN LEE

#	Article	IF	CITATIONS
37	Microcavity Enhanced Second Harmonic Generation in 2D Semiconductors. , 2016, , .		3
38	Observation of interlayer phonon modes in van der Waals heterostructures. Physical Review B, 2015, 91, .	3.2	174
39	Intervalley biexcitons and many-body effects in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Physical Review B, 2015, 92, .</mml:mn></mml:msub></mml:math 	m a. 2 <td>ıl:msııb></td>	ıl:m sı ıb>
40	Synthesis and Application of Monolayer Semiconductors (June 2015). IEEE Journal of Quantum Electronics, 2015, 51, 1-10.	1.9	13
41	Large-Area Synthesis of High-Quality Uniform Few-Layer MoTe ₂ . Journal of the American Chemical Society, 2015, 137, 11892-11895.	13.7	302
42	Valley-selective optical Stark effect in monolayerÂWS2. Nature Materials, 2015, 14, 290-294.	27.5	479
43	Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers. Nano Letters, 2015, 15, 410-415.	9.1	285
44	Strong light–matter coupling in two-dimensional atomic crystals. Nature Photonics, 2015, 9, 30-34.	31.4	865
45	Graphene/MoS ₂ Hybrid Technology for Large-Scale Two-Dimensional Electronics. Nano Letters, 2014, 14, 3055-3063.	9.1	554
46	Role of the Seeding Promoter in MoS ₂ Growth by Chemical Vapor Deposition. Nano Letters, 2014, 14, 464-472.	9.1	633
47	Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nature Communications, 2014, 5, 3087.	12.8	370
48	Broadband optical properties of large-area monolayer CVD molybdenum disulfide. Physical Review B, 2014, 90, .	3.2	106
49	Dielectric Screening of Excitons and Trions in Single-Layer MoS ₂ . Nano Letters, 2014, 14, 5569-5576.	9.1	520
50	Synthesis and Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces. Nano Letters, 2013, 13, 1852-1857.	9.1	612
51	Synthesis of Largeâ€Area MoS ₂ Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012, 24, 2320-2325.	21.0	2,956