Griffin Hosseinzadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2793306/publications.pdf

Version: 2024-02-01

101 papers

8,539 citations

39 h-index 91 g-index

101 all docs

101 does citations

times ranked

101

9996 citing authors

#	Article	IF	CITATIONS
1	The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package [*] . Astronomical Journal, 2018, 156, 123.	1.9	4,142
2	Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature, 2017, 551, 64-66.	13.7	417
3	The diversity of Type II supernova versus the similarity in their progenitors. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3939-3962.	1.6	227
4	The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole. Nature Astronomy, 2017, 1, .	4.2	154
5	SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA. Astrophysical Journal, 2016, 826, 39.	1.6	133
6	The Rapid Reddening and Featureless Optical Spectra of the Optical Counterpart of GW170817, AT 2017gfo, during the First Four Days. Astrophysical Journal Letters, 2017, 848, L32.	3.0	129
7	Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor. Astrophysical Journal Letters, 2017, 845, L11.	3.0	120
8	Two Years of Nonthermal Emission from the Binary Neutron Star Merger GW170817: Rapid Fading of the Jet Afterglow and First Constraints on the Kilonova Fastest Ejecta. Astrophysical Journal Letters, 2019, 886, L17.	3.0	117
9	Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star. Nature, 2017, 551, 210-213.	13.7	112
10	iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy. Astrophysical Journal, 2017, 844, 46.	1.6	111
11	1ES 1927+654: An AGN Caught Changing Look on a Timescale of Months. Astrophysical Journal, 2019, 883, 94.	1.6	95
12	Hydrogen-poor Superluminous Supernovae with Late-time Hα Emission: Three Events From the Intermediate Palomar Transient Factory. Astrophysical Journal, 2017, 848, 6.	1.6	91
13	Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors?. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1559-1578.	1.6	90
14	SUPERLUMINOUS SUPERNOVA SN 2015bn IN THE NEBULAR PHASE: EVIDENCE FOR THE ENGINE-POWERED EXPLOSION OF A STRIPPED MASSIVE STAR. Astrophysical Journal Letters, 2016, 828, L18.	3.0	88
15	The Early Detection and Follow-up of the Highly Obscured Type II Supernova 2016ija/DLT16am ^{â^—} . Astrophysical Journal, 2018, 853, 62.	1.6	87
16	Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory. Astrophysical Journal Letters, 2017, 848, L33.	3.0	80
17	K2 Observations of SN 2018oh Reveal a Two-component Rising Light Curve for a Type Ia Supernova. Astrophysical Journal Letters, 2019, 870, L1.	3.0	80
18	Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light. Astrophysical Journal, 2017, 836, 158.	1.6	79

#	Article	IF	CITATIONS
19	The Broad Absorption Line Tidal Disruption Event iPTF15af: Optical and Ultraviolet Evolution. Astrophysical Journal, 2019, 873, 92.	1.6	69
20	Follow-up of the Neutron Star Bearing Gravitational-wave Candidate Events S190425z and S190426c with MMT and SOAR. Astrophysical Journal Letters, 2019, 880, L4.	3.0	63
21	Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a "Normal,―Massive, Metal-rich Spiral Galaxy. Astrophysical Journal, 2018, 853, 57.	1.6	60
22	Photometric and Spectroscopic Properties of Type Ia Supernova 2018oh with Early Excess Emission from the Kepler 2 Observations. Astrophysical Journal, 2019, 870, 12.	1.6	60
23	Analysis of broad-lined Type Ic supernovae from the (intermediate) Palomar Transient Factory. Astronomy and Astrophysics, 2019, 621, A71.	2.1	59
24	An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz. Monthly Notices of the Royal Astronomical Society, 2020, 499, 482-504.	1.6	58
25	A new class of flares from accreting supermassive black holes. Nature Astronomy, 2019, 3, 242-250.	4.2	57
26	The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae. Astrophysical Journal, Supplement Series, 2021, 255, 29.	3.0	56
27	The multifaceted Type II-L supernova 2014G from pre-maximum to nebular phase. Monthly Notices of the Royal Astronomical Society, 2016, 462, 137-157.	1.6	55
28	Nebular-phase spectra of nearby Type Ia Supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3437-3454.	1.6	53
29	Short-lived Circumstellar Interaction in the Low-luminosity Type IIP SN 2016bkv. Astrophysical Journal, 2018, 861, 63.	1.6	52
30	M31N 2008-12aâ€"THE REMARKABLE RECURRENT NOVA IN M31: PANCHROMATIC OBSERVATIONS OF THE 2015 ERUPTION. Astrophysical Journal, 2016, 833, 149.	1.6	50
31	Nebular Spectroscopy of the "Blue Bump―Type la Supernova 2017cbv. Astrophysical Journal, 2018, 863, 24.	1.6	50
32	A Galaxy-targeted Search for the Optical Counterpart of the Candidate NS–BH Merger S190814bv with Magellan. Astrophysical Journal Letters, 2019, 884, L55.	3.0	50
33	Constraints on the Progenitor of SN 2016gkg from Its Shock-cooling Light Curve. Astrophysical Journal Letters, 2017, 837, L2.	3.0	49
34	Early Observations of the Type la Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing. Astrophysical Journal, 2018, 852, 100.	1.6	49
35	The Progenitor and Early Evolution of the Type IIb SN 2016gkg. Astrophysical Journal Letters, 2017, 836, L12.	3.0	49
36	SN 2019ehk: A Double-peaked Ca-rich Transient with Luminous X-Ray Emission and Shock-ionized Spectral Features. Astrophysical Journal, 2020, 898, 166.	1.6	48

#	Article	lF	Citations
37	The electron-capture origin of supernova 2018zd. Nature Astronomy, 2021, 5, 903-910.	4.2	47
38	SuperRAENN: A Semisupervised Supernova Photometric Classification Pipeline Trained on Pan-STARRS1 Medium-Deep Survey Supernovae. Astrophysical Journal, 2020, 905, 94.	1.6	43
39	The Type II-P Supernova 2017eaw: From Explosion to the Nebular Phase. Astrophysical Journal, 2019, 876, 19.	1.6	42
40	Evidence for X-Ray Emission in Excess to the Jet-afterglow Decay 3.5 yr after the Binary Neutron Star Merger GW 170817: A New Emission Component. Astrophysical Journal Letters, 2022, 927, L17.	3.0	41
41	SN 2016coi/ASASSN-16fp: an example of residual helium in a typelc supernova?. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4162-4192.	1.6	37
42	A nearby super-luminous supernova with a long pre-maximum & "plateau―and strong C†II features. Astronomy and Astrophysics, 2018, 620, A67.	2.1	36
43	Evidence for a Chandrasekhar-mass explosion in the Ca-strong 1991bg-like type Ia supernova 2016hnk. Astronomy and Astrophysics, 2019, 630, A76.	2.1	35
44	The tidal disruption event AT 2018hyz – I. Double-peaked emission lines and a flat Balmer decrement. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4119-4133.	1.6	35
45	Early observations of the nearby Type la supernova SNÂ2015F. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4476-4494.	1.6	33
46	Type Ibn Supernovae May not all Come from Massive Stars. Astrophysical Journal Letters, 2019, 871, L9.	3.0	32
47	The Young and Nearby Normal Type Ia Supernova 2018gv: UV-optical Observations and the Earliest Spectropolarimetry. Astrophysical Journal, 2020, 902, 46.	1.6	32
48	The long-lived Type IIn SN 2015da: Infrared echoes and strong interaction within an extended massive shell. Astronomy and Astrophysics, 2020, 635, A39.	2.1	29
49	SN 2016iet: The Pulsational or Pair Instability Explosion of a Low-metallicity Massive CO Core Embedded in a Dense Hydrogen-poor Circumstellar Medium. Astrophysical Journal, 2019, 881, 87.	1.6	28
50	Observations of SN 2017ein Reveal Shock Breakout Emission and a Massive Progenitor Star for a Type Ic Supernova. Astrophysical Journal, 2019, 871, 176.	1.6	27
51	Oxygen and helium in stripped-envelope supernovae. Astronomy and Astrophysics, 2018, 618, A37.	2.1	26
52	Type II supernovae in low-luminosity host galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3232-3253.	1.6	26
53	The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor. Nature Astronomy, 2018, 2, 574-579.	4.2	26
54	The Tidal Disruption Event AT 2018hyz II: Light-curve modelling of a partially disrupted star. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1925-1934.	1.6	25

#	Article	IF	Citations
55	The Peculiar Transient AT2018cow: A Possible Origin of a Type Ibn/IIn Supernova. Astrophysical Journal, 2021, 910, 42.	1.6	25
56	Near-infrared Supernova la Distances: Host Galaxy Extinction and Mass-step Corrections Revisited. Astrophysical Journal, 2021, 923, 237.	1.6	24
57	Signatures of circumstellar interaction in the Type IIL supernova ASASSN-15oz. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5120-5141.	1.6	23
58	Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae. Astrophysical Journal, 2022, 933, 14.	1.6	23
59	Red and Reddened: Ultraviolet through Near-infrared Observations of Type Ia Supernova 2017erp*. Astrophysical Journal, 2019, 877, 152.	1.6	22
60	The Early Discovery of SN 2017ahn: Signatures of Persistent Interaction in a Fast-declining Type II Supernova. Astrophysical Journal, 2021, 907, 52.	1.6	22
61	A Deep-learning Approach for Live Anomaly Detection of Extragalactic Transients. Astrophysical Journal, Supplement Series, 2021, 255, 24.	3.0	22
62	Massive stars exploding in a He-rich circumstellar medium – VII. The metamorphosis of ASASSN-15ed from a narrow line Type Ibn to a normal Type Ib Supernova. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3650-3662.	1.6	21
63	Luminous Type II Short-Plateau Supernovae 2006Y, 2006ai, and 2016egz: A Transitional Class from Stripped Massive Red Supergiants. Astrophysical Journal, 2021, 913, 55.	1.6	20
64	Circumstellar Interaction Powers the Light Curves of Luminous Rapidly Evolving Optical Transients. Astrophysical Journal, 2022, 926, 125.	1.6	20
65	OPTICAL AND ULTRAVIOLET OBSERVATIONS OF THE VERY YOUNG TYPE IIP SN 2014cx IN NGC 337. Astrophysical Journal, 2016, 832, 139.	1.6	19
66	The Luminous and Double-peaked Type Ic Supernova 2019stc: Evidence for Multiple Energy Sources. Astrophysical Journal, 2021, 913, 143.	1.6	19
67	Late-time Radio and Millimeter Observations of Superluminous Supernovae and Long Gamma-Ray Bursts: Implications for Central Engines, Fast Radio Bursts, and Obscured Star Formation. Astrophysical Journal, 2021, 912, 21.	1.6	18
68	Constraining the Progenitor System of the Type Ia Supernova 2021aefx. Astrophysical Journal Letters, 2022, 933, L45.	3.0	18
69	Still Brighter than Pre-explosion, SN 2012Z Did Not Disappear: Comparing Hubble Space Telescope Observations a Decade Apart. Astrophysical Journal, 2022, 925, 138.	1.6	17
70	Infant-phase reddening by surface Fe-peak elements in a normal type Ia supernova. Nature Astronomy, 2022, 6, 568-576.	4.2	17
71	Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj. Astrophysical Journal, 2017, 841, 64.	1.6	16
72	SNÂ2017gci: a nearby Type I Superluminous Supernova with a bumpy tail. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2120-2139.	1.6	16

#	Article	ΙF	Citations
73	Flash Ionization Signatures in the Type Ibn Supernova SN 2019uo. Astrophysical Journal, 2020, 889, 170.	1.6	15
74	FLEET: A Redshift-agnostic Machine Learning Pipeline to Rapidly Identify Hydrogen-poor Superluminous Supernovae. Astrophysical Journal, 2020, 904, 74.	1.6	15
75	Photometric Classification of 2315 Pan-STARRS1 Supernovae with Superphot. Astrophysical Journal, 2020, 905, 93.	1.6	15
76	Time-varying sodium absorption in the Type Ia supernova 2013gh. Astronomy and Astrophysics, 2016, 592, A40.	2.1	14
77	SN 2015ba: a Type IIP supernova with a long plateau. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2421-2442.	1.6	14
78	Discovery and Rapid Follow-up Observations of the Unusual Type II SN 2018ivc in NGC 1068. Astrophysical Journal, 2020, 895, 31.	1.6	14
79	Late-time Observations of Calcium-rich Transient SN 2019ehk Reveal a Pure Radioactive Decay Power Source. Astrophysical Journal Letters, 2021, 908, L32.	3.0	14
80	A luminous stellar outburst during a long-lasting eruptive phase first, and then SN IIn 2018cnf. Astronomy and Astrophysics, 2019, 628, A93.	2.1	13
81	Supernova 2018cuf: A Type IIP Supernova with a Slow Fall from Plateau. Astrophysical Journal, 2020, 906, 56.	1.6	12
82	LSQ14efd: observations of the cooling of a shock break-out event in a type Ic Supernova. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2463-2480.	1.6	10
83	The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio. Monthly Notices of the Royal Astronomical Society, 2020, 497, 361-377.	1.6	10
84	SN 2017fgc: A Fast-expanding Type Ia Supernova Exploded in Massive Shell Galaxy NGC 474. Astrophysical Journal, 2021, 919, 49.	1.6	10
85	SN 2018agk: A Prototypical Type la Supernova with a Smooth Power-law Rise in Kepler (K2). Astrophysical Journal, 2021, 923, 167.	1.6	10
86	SN 2017cfd: A Normal Type la Supernova Discovered Very Young. Astrophysical Journal, 2020, 892, 142.	1.6	9
87	SN 2016gsd: an unusually luminous and linear Type II supernova with high velocities. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1761-1781.	1.6	9
88	SNÂ2017ivv: two years of evolution of a transitional Type II supernova. Monthly Notices of the Royal Astronomical Society, 2020, 499, 974-992.	1.6	7
89	ATÂ2017be - a new member of the class of Intermediate-Luminosity Red Transients. Monthly Notices of the Royal Astronomical Society, 0 , , .	1.6	6
90	Late-time Hubble Space Telescope Observations of a Hydrogen-poor Superluminous Supernova Reveal the Power-law Decline of a Magnetar Central Engine. Astrophysical Journal, 2021, 921, 64.	1.6	6

#	Article	IF	CITATIONS
91	Magnetar Models of Superluminous Supernovae from the Dark Energy Survey: Exploring Redshift Evolution. Astrophysical Journal, 2021, 921, 180.	1.6	6
92	A Systematic Exploration of Kilonova Candidates from Neutron Star Mergers during the Third Gravitational-wave Observing Run. Astrophysical Journal, 2022, 927, 50.	1.6	6
93	Close, bright, and boxy: the superluminous SN 2018hti. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4484-4502.	1.6	5
94	SN 2015an: a normal luminosity type II supernova with low expansion velocity at early phases. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1605-1619.	1.6	4
95	Constraining the Time of Gravitational-wave Emission from Core-collapse Supernovae. Astrophysical Journal, 2022, 931, 159.	1.6	4
96	SN 2014ab: an aspherical Type IIn supernova with low polarization. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3835-3851.	1.6	3
97	The Fast-evolving Type Ib Supernova SN 2015dj in NGC 7371. Astrophysical Journal, 2021, 909, 100.	1.6	2
98	SN 2017hpa: A Nearby Carbon-rich Type Ia Supernova with a Large Velocity Gradient. Astrophysical Journal, 2021, 909, 176.	1.6	2
99	Evolution of a Peculiar Type Ibn Supernova SN 2019wep. Astrophysical Journal, 2022, 930, 127.	1.6	2
100	Optical Observations and Modeling of the Superluminous Supernova 2018lfe. Astrophysical Journal, 2022, 931, 32.	1.6	1
101	Early Blue Excess from the Type Ia Supernova 2017cbv. Proceedings of the International Astronomical Union, 2017, 14, 47-49.	0.0	O