Cleofe Palocci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/279330/publications.pdf

Version: 2024-02-01

52 1,567
papers citations

24 h-index 38 g-index

52 all docs

52 docs citations 52 times ranked 2489 citing authors

#	Article	IF	CITATIONS
1	A novel approach to control Botrytis cinerea fungal infections: uptake and biological activity of antifungals encapsulated in nanoparticle based vectors. Scientific Reports, 2022, 12, 7989.	3.3	15
2	Polymeric Nanoparticles Decorated with Monoclonal Antibodies: A New Immobilization Strategy for Increasing Lipase Activity. Catalysts, 2021, 11, 744.	3 . 5	2
3	Controlled Release of $18\hat{-}^2$ -Glycyrrhetinic Acid from Core-Shell Nanoparticles: Effects on Cytotoxicity and Intracellular Concentration in HepG2 Cell Line. Materials, 2021, 14, 3893.	2.9	5
4	Biosynthesis and physico-chemical characterization of high performing peptide hydrogels@graphene oxide composites. Colloids and Surfaces B: Biointerfaces, 2021, 207, 111989.	5.0	6
5	Biosynthesis of innovative calcium phosphate/hydrogel composites: physicochemical and biological characterisation. Nanotechnology, 2021, 32, 095102.	2.6	18
6	Noble metal nanoparticle-based networks as a new platform for lipase immobilization. International Journal of Biological Macromolecules, 2020, 146, 790-797.	7.5	8
7	Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens. Biology, 2020, 9, 450.	2.8	29
8	Extraction of Carotenoids and Fat-Soluble Vitamins from Tetradesmus Obliquus Microalgae: An Optimized Approach by Using Supercritical CO2. Molecules, 2019, 24, 2581.	3.8	27
9	Anti-Candida Biofilm Activity of Pterostilbene or Crude Extract from Non-Fermented Grape Pomace Entrapped in Biopolymeric Nanoparticles. Molecules, 2019, 24, 2070.	3 . 8	26
10	PLGA based particles as "drug reservoir―for antitumor drug delivery: characterization and cytotoxicity studies. Colloids and Surfaces B: Biointerfaces, 2019, 180, 495-502.	5 . 0	10
11	Microfluidic synthesis of methyl jasmonate-loaded PLGA nanocarriers as a new strategy to improve natural defenses in Vitis vinifera. Scientific Reports, 2019, 9, 18322.	3.3	21
12	Controlled release of 18 - $\langle i \rangle \hat{l}^2 \langle i \rangle$ -glycyrrhetic acid by nanodelivery systems increases cytotoxicity on oral carcinoma cell line. Nanotechnology, 2018, 29, 285101.	2.6	40
13	A physico-chemical approach to the study of genipin crosslinking of biofabricated peptide hydrogels. Process Biochemistry, 2018, 70, 110-116.	3.7	15
14	Evaluation of novel Fmoc-tripeptide based hydrogels as immobilization supports for electrochemical biosensors. Microchemical Journal, 2018, 137, 105-110.	4.5	14
15	Biofabrication of genipin-crosslinked peptide hydrogels and their use in the controlled delivery of naproxen. New Biotechnology, 2017, 37, 138-143.	4.4	21
16	Microfluidic-assisted nanoprecipitation of antiviral-loaded polymeric nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 369-376.	4.7	42
17	Biosynthesis and characterization of a novel Fmoc-tetrapeptide-based hydrogel for biotechnological applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 535-540.	4.7	11
18	Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection. Plant Cell Reports, 2017, 36, 1917-1928.	5 . 6	84

#	Article	IF	Citations
19	Stabilization of Iron (Micro)Particles with Polyhydroxybutyrate for In Situ Remediation Applications. Applied Sciences (Switzerland), 2016, 6, 417.	2.5	13
20	Positively charged biopolymeric nanoparticles for the inhibition of Pseudomonas aeruginosa biofilms. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	8
21	Chitosan based nanoparticles functionalized with peptidomimetic derivatives for oral drug delivery. New Biotechnology, 2016, 33, 23-31.	4.4	29
22	Biosynthesis and Characterization of Cross-Linked Fmoc Peptide-Based Hydrogels for Drug Delivery Applications. Gels, 2015, 1, 179-193.	4.5	22
23	Improved stability and efficacy of chitosan/pDNA complexes for gene delivery. Biotechnology Letters, 2015, 37, 557-565.	2.2	21
24	Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts: Activity and stability investigations. Colloids and Surfaces B: Biointerfaces, 2015, 131, 93-101.	5.0	53
25	Dexamethasone-loaded biopolymeric nanoparticles promote gingival fibroblasts differentiation. Biotechnology Progress, 2015, 31, 1381-1387.	2.6	14
26	A modular microfluidic platform for the synthesis of biopolymeric nanoparticles entrapping organic actives. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	32
27	Poly(lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	41
28	Designing unconventional Fmoc-peptide-based biomaterials: structure and related properties. Soft Matter, 2014, 10, 1944.	2.7	37
29	Chitosan–DNA complexes: Effect of molecular parameters on the efficiency of delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 184-190.	4.7	32
30	Chitosan–DNA complexes: Charge inversion and DNA condensation. Colloids and Surfaces B: Biointerfaces, 2014, 114, 1-10.	5.0	47
31	Supercritical <scp>CO</scp> ₂ extraction of oleanolic acid from grape pomace. International Journal of Food Science and Technology, 2013, 48, 1854-1860.	2.7	7
32	Chitosan-coated PLGA nanoparticles: A sustained drug release strategy for cell cultures. Colloids and Surfaces B: Biointerfaces, 2013, 103, 310-317.	5.0	117
33	Self-assembling peptide hydrogels promote microglial cells proliferation and NGF production. Soft Matter, 2012, 8, 5784.	2.7	32
34	Functional polymeric nanoparticles for dexamethasone loading and release. Colloids and Surfaces B: Biointerfaces, 2012, 93, 59-66.	5.0	41
35	Structure–activity relationships of Candida rugosa lipase immobilized on polylactic acid nanoparticles. Soft Matter, 2011, 7, 2653.	2.7	56
36	Adsorption of Candida rugosa lipase at water-polymer interface: The case of poly(dl)lactide. Surface Science, 2011, 605, 2017-2024.	1.9	9

#	Article	IF	CITATIONS
37	Hybrid Systems Biomolecule-Polymeric Nanoparticle: Synthesis, Properties and Biotechnological Applications., 2010,, 219-259.		2
38	Lipase-supported synthesis of peptidic hydrogels. Soft Matter, 2010, 6, 2525.	2.7	62
39	Osmosis Based Method Drives the Self-Assembly of Polymeric Chains into Micro- and Nanostructures. Langmuir, 2009, 25, 11940-11946.	3.5	72
40	Lipase-catalyzed regioselective acylation of tritylglycosides in supercritical carbon dioxide. Journal of Supercritical Fluids, 2008, 45, 88-93.	3.2	33
41	A novel method to obtain chitosan/DNA nanospheres and a study of their release properties. Nanotechnology, 2008, 19, 055302.	2.6	35
42	An approach to address Candida rugosa lipase regioselectivity in the acylation reactions of trytilated glucosides. Journal of Biotechnology, 2007, 128, 908-918.	3.8	19
43	Latex lipase of Euphorbia characias L.: An aspecific acylhydrolase with several isoforms. Plant Science, 2007, 172, 722-727.	3.6	23
44	Lipolytic Enzymes with Improved Activity and Selectivity upon Adsorption on Polymeric Nanoparticles. Biomacromolecules, 2007, 8, 3047-3053.	5.4	57
45	Porous Biomaterials Obtained Using Supercritical CO2â^'Water Emulsions. Langmuir, 2007, 23, 8243-8251.	3.5	60
46	Tuning Pseudomonas cepacea lipase (PCL) activity in supercritical fluids. Journal of Supercritical Fluids, 2005, 33, 193-199.	3.2	52
47	Monoclonal antibodies against Candida rugosa lipase. Journal of Molecular Catalysis B: Enzymatic, 2004, 28, 71-74.	1.8	14
48	Lipolytic isoenzymes from Euphorbia latex. Plant Science, 2003, 165, 577-582.	3.6	29
49	Lipase-catalyzed regioselective acylation of resorcin[4]arenes. Journal of Molecular Catalysis B: Enzymatic, 2002, 16, 241-247.	1.8	13
50	Lipase enhanced catalytic efficiency in lactonisation reactions. Journal of Molecular Catalysis B: Enzymatic, 2001, 16, 1-5.	1.8	4
51	High yield and optical purity in biocatalysed acylation of trans-2-phenyl-1-cyclohexanol with Candida rugosa lipase in non-conventional media. Journal of Molecular Catalysis B: Enzymatic, 1999, 6, 495-503.	1.8	19
52	Two isoflavones and a flavone from the fruits of Maclura pomifera. Phytochemistry, 1994, 37, 893-898.	2.9	68