
Min Hye Youn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2793258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In–Bi Electrocatalyst for the Reduction of CO ₂ to Formate in a Wide Potential Window. ACS Applied Materials & Interfaces, 2022, 14, 28890-28899.	4.0	16
2	Highly tunable syngas production by electrocatalytic reduction of CO2 using Ag/TiO2 catalysts. Chemical Engineering Journal, 2021, 413, 127448.	6.6	28
3	Unravelling the K-promotion effect in highly active and stable Fe5C2 nanoparticles for catalytic linear α-olefin production. Materials Advances, 2021, 2, 1050-1058.	2.6	3
4	Determination of kinetic factors of CO2 mineralization reaction for reducing CO2 emissions in cement industry and verification using CFD modeling. Chemical Engineering Journal, 2021, 420, 129420.	6.6	10
5	Formation of CaCO3 from calcium sources with different anions in single process of CO2 capture-mineralization. Korean Journal of Chemical Engineering, 2020, 37, 1709-1716.	1.2	1
6	Effect of Ba impregnation on Al2O3 catalyst for 1-octene production by 1-octanol dehydration. Fuel, 2020, 281, 118791.	3.4	10
7	Brief Review of Precipitated Iron-Based Catalysts for Low-Temperature Fischer–Tropsch Synthesis. Topics in Catalysis, 2020, 63, 793-809.	1.3	22
8	Investigation on Electroreduction of CO ₂ to Formic Acid Using Cu ₃ (BTC) ₂ Metal–Organic Framework (Cu-MOF) and Graphene Oxide. ACS Omega, 2020, 5, 23919-23930.	1.6	47
9	Nitrogen and sulfur dual-doped porous carbon derived from coffee waste and cysteine for electrochemical energy storage. Korean Journal of Chemical Engineering, 2020, 37, 1218-1225.	1.2	5
10	Catalytic upgrading of long-chain 1-alkene in synthetic fuels over shape-controlled cobalt oxide nanocrystals. Fuel, 2020, 269, 117397.	3.4	8
11	Comparison of reactions with different calcium sources for CaCO ₃ production using carbonic anhydrase. , 2020, 10, 898-906.		6
12	Phase-controlled synthesis of thermally stable nitrogen-doped carbon supported iron catalysts for highly efficient Fischer-Tropsch synthesis. Nano Research, 2019, 12, 2568-2575.	5.8	18
13	Carbon dioxide sequestration process for the cement industry. Journal of CO2 Utilization, 2019, 34, 325-334.	3.3	37
14	Extremely productive iron-carbide nanoparticles on graphene flakes for CO hydrogenation reactions under harsh conditions. Journal of Catalysis, 2019, 378, 289-297.	3.1	17
15	Production of linear α-olefin 1-octene via dehydration of 1-octanol over Al2O3 catalyst. Fuel, 2019, 256, 115957.	3.4	11
16	Leaching-resistant SnO2/Î ³ -Al2O3 nanocatalyst for stable electrochemical CO2 reduction into formate. Journal of Industrial and Engineering Chemistry, 2019, 78, 73-78.	2.9	21
17	Eco-friendly prepared iron-ore-based catalysts for Fischer-Tropsch synthesis. Applied Catalysis B: Environmental, 2019, 244, 576-582.	10.8	30
18	Catholyteâ€Free Electrocatalytic CO ₂ Reduction to Formate. Angewandte Chemie - International Edition, 2018, 57, 6883-6887.	7.2	143

#	Article	IF	CITATIONS
19	Energy-efficient chemical regeneration of AMP using calcium hydroxide for operating carbon dioxide capture process. Chemical Engineering Journal, 2018, 335, 338-344.	6.6	55
20	A durable nanocatalyst of potassium-doped iron-carbide/alumina for significant production of linear alpha olefins via Fischer-Tropsch synthesis. Applied Catalysis A: General, 2018, 564, 190-198.	2.2	19
21	Effect of process parameters on the CaCO3 production in the single process for carbon capture and mineralization. Korean Journal of Chemical Engineering, 2017, 34, 935-941.	1.2	25
22	Enhanced CO2 absorption and desorption in a tertiary amine medium with a carbonic anhydrase mimic. Journal of Industrial and Engineering Chemistry, 2017, 52, 287-294.	2.9	24
23	Calcium extraction from steelmaking slag and production of precipitated calcium carbonate from calcium oxide for carbon dioxide fixation. Journal of Industrial and Engineering Chemistry, 2017, 53, 233-240.	2.9	31
24	Single Process for CO ₂ Capture and Mineralization in Various Alkanolamines Using Calcium Chloride. Energy & Fuels, 2017, 31, 763-769.	2.5	49
25	Simultaneous Sodium Hydroxide Production by Membrane Electrolysis and Carbon Dioxide Capture. Chemical Engineering and Technology, 2017, 40, 2204-2211.	0.9	4
26	Substituted Benzoxazole and Catechol Cocrystals as an Adsorbent for CO2 Capture: Synthesis and Mechanistic Studies. Crystal Growth and Design, 2017, 17, 4504-4510.	1.4	4
27	Mono- and dinuclear Cu ^{II} complexes of the benzyldipicolylamine (BDPA) ligand: crystal structure, synthesis and characterization. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 1024-1029.	0.2	0
28	The salt-based catalytic enhancement of CO ₂ absorption by a tertiary amine medium. RSC Advances, 2016, 6, 64575-64580.	1.7	10
29	Influences of zinc–metal complex on the carbon dioxide regeneration behaviors of alkanolamine absorbents. Journal of Industrial and Engineering Chemistry, 2016, 34, 76-83.	2.9	16
30	Carbon Dioxide Sequestration by Using a Model Carbonic Anhydrase Complex in Tertiary Amine Medium. ChemSusChem, 2015, 8, 3977-3982.	3.6	19
31	Microporous and Mesoporous ZSM-5 Catalyst for Catalytic Cracking of C ₅ Raffinate to Light Olefins. Journal of Nanoscience and Nanotechnology, 2014, 14, 8817-8822.	0.9	2
32	Characteristics of CO2 capture system using KIERSOL in the LNG flue gas. Energy Procedia, 2014, 63, 1745-1750.	1.8	5
33	Catalytic cracking of C5 raffinate to light olefins over lanthanum-containing phosphorous-modified porous ZSM-5: Effect of lanthanum content. Fuel Processing Technology, 2013, 109, 189-195.	3.7	57
34	Production of light olefins through catalytic cracking of C5 raffinate over carbon-templated ZSM-5. Fuel Processing Technology, 2013, 108, 25-30.	3.7	19
35	Catalytic Cracking of C ₅ Raffinate to Light Olefins Over Phosphorous-Modified Microporous and Mesoporous ZSM-5. Journal of Nanoscience and Nanotechnology, 2013, 13, 7504-7510.	0.9	3
36	Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous nickel–aluminaÂxerogel catalysts prepared by a single-step carbon-templating sol–gel method. International Journal of Hydrogen Energy, 2012, 37, 11208-11217.	3.8	18

#	Article	IF	CITATIONS
37	Hydrogen production by steam reforming of liquefied natural gas (LNG) over ordered mesoporous nickel–alumina catalyst. International Journal of Hydrogen Energy, 2012, 37, 17967-17977.	3.8	43
38	Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous Ni-Al2O3 aerogel catalyst prepared by a single-step epoxide-driven sol-gel method. International Journal of Hydrogen Energy, 2012, 37, 1436-1443.	3.8	27
39	Catalytic cracking of C5 raffinate to light olefins over NaOH-treated ZSM-5. Research on Chemical Intermediates, 2011, 37, 1173-1180.	1.3	6
40	Hydrogen production by steam reforming of simulated liquefied natural gas (LNG) over mesoporous nickel–M–alumina (M=Ni, Ce, La, Y, Cs, Fe, Co, and Mg) aerogel catalysts. International Journal of Hydrogen Energy, 2011, 36, 3505-3514.	3.8	21
41	Production of middle distillate through hydrocracking of paraffin wax over Pd0.15Cs x H2.7â^'x PW12O40 catalysts: Effect of cesium content and surface acidity. Korean Journal of Chemical Engineering, 2010, 27, 807-811.	1.2	5
42	Mesoporous Nickel–Alumina Catalysts for Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG). Catalysis Surveys From Asia, 2010, 14, 1-10.	1.0	10
43	Support Modification of Supported Nickel Catalysts for Hydrogen Production by Auto-thermal Reforming of Ethanol. Catalysis Surveys From Asia, 2010, 14, 55-63.	1.0	10
44	Effect of calcination temperature of mesoporous nickel–alumina catalysts on their catalytic performance in hydrogen production by steam reforming of liquefied natural gas (LNG). Journal of Industrial and Engineering Chemistry, 2010, 16, 795-799.	2.9	31
45	Hydrogen production by auto-thermal reforming of ethanol over nickel catalyst supported on metal oxide-stabilized zirconia. International Journal of Hydrogen Energy, 2010, 35, 3490-3498.	3.8	28
46	Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous nickel–alumina aerogel catalyst. International Journal of Hydrogen Energy, 2010, 35, 6738-6746.	3.8	37
47	Effect of Ni/Al atomic ratio of mesoporous Ni–Al2O3 aerogel catalysts on their catalytic activity for hydrogen production by steam reforming of liquefied natural gas (LNG). International Journal of Hydrogen Energy, 2010, 35, 12174-12181.	3.8	26
48	Hydrogen production by auto-thermal reforming of ethanol over nickel catalysts supported on metal oxides: Effect of support acidity. Applied Catalysis B: Environmental, 2010, 98, 57-64.	10.8	60
49	Hydrogen Production by Steam Reforming of Liquefied Natural Gas over Mesoporous Ni-Al2O3 Catalysts Prepared by a Co-Precipitation Method: Effect of Ni/Al Atomic Ratio. Catalysis Letters, 2009, 130, 410-416.	1.4	20
50	Preparation and Oxidation Catalysis of H5PMo10V2O40 Catalyst Immobilized on Nitrogen-Containing Spherical Carbon. Catalysis Letters, 2009, 132, 377-382.	1.4	10
51	Hydrogen Production by Steam Reforming of Liquefied Natural Gas Over Mesoporous Ni-Al2O3 Composite Catalyst Prepared by a Single-step Non-ionic Surfactant-templating Method. Catalysis Letters, 2009, 132, 395-401.	1.4	17
52	Production of Middle Distillate Through Hydrocracking of Paraffin Wax Over NiMo/SiO2-Al2O3 Catalysts: Effect of Solvent in the Preparation of SiO2-Al2O3 by a Sol–Gel Method. Catalysis Letters, 2009, 132, 410-416.	1.4	9
53	Hydrogen production by steam reforming of liquefied natural gas (LNG) over nickel catalyst supported on mesoporous alumina prepared by a non-ionic surfactant-templating method. International Journal of Hydrogen Energy, 2009, 34, 1809-1817.	3.8	49
54	Hydrogen production by steam reforming of liquefied natural gas (LNG) over Ni/Al2O3–ZrO2 xerogel catalysts: Effect of calcination temperature of Al2O3–ZrO2 xerogel supports. International Journal of Hydrogen Energy, 2009, 34, 3755-3763.	3.8	62

#	Article	IF	CITATIONS
55	Effect of preparation method of mesoporous Ni–Al2O3 catalysts on their catalytic activity for hydrogen production by steam reforming of liquefied natural gas (LNG). International Journal of Hydrogen Energy, 2009, 34, 5409-5416.	3.8	31
56	Hydrogen production by auto-thermal reforming of ethanol over nickel catalyst supported on mesoporous yttria-stabilized zirconia. International Journal of Hydrogen Energy, 2009, 34, 5390-5397.	3.8	29
57	Hydrogen production by steam reforming of liquefied natural gas (LNG) over Ni–Al2O3 catalysts prepared by a sequential precipitation method: Effect of precipitation agent. International Journal of Hydrogen Energy, 2009, 34, 8053-8060.	3.8	14
58	Hydrogen production by steam reforming of liquefied natural gas (LNG) over nickel catalysts supported on cationic surfactant-templated mesoporous aluminas. Journal of Power Sources, 2009, 186, 178-184.	4.0	24
59	Hydrogen production by auto-thermal reforming of ethanol over Ni-Ti-Zr metal oxide catalysts. Renewable Energy, 2009, 34, 731-735.	4.3	14
60	Hydrogen production by auto-thermal reforming of ethanol over Ni catalyst supported on ZrO2 prepared by a sol–gel method: Effect of H2O/P123 mass ratio in the preparation of ZrO2. Catalysis Today, 2009, 146, 57-62.	2.2	24
61	Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous nickel–alumina composite catalyst prepared by an anionic surfactant-templating method. Catalysis Today, 2009, 146, 44-49.	2.2	28
62	Effect of calcination temperature of alumina supports on the wax hydrocracking performance of Pd-loaded mesoporous alumina xerogel catalysts for the production of middle distillate. Chemical Engineering Journal, 2009, 146, 307-314.	6.6	32
63	Epoxidation of Propylene with Hydrogen Peroxide Over TS-1 Catalyst Synthesized in the Presence of Polystyrene. Catalysis Letters, 2008, 122, 349-353.	1.4	20
64	Effect of Al2O3-ZrO2 xerogel support on hydrogen production by steam reforming of LNG over Ni/Al2O3-ZrO2 catalyst. Korean Journal of Chemical Engineering, 2008, 25, 41-45.	1.2	76
65	Hydrogen production by steam reforming of LNG over Ni/Al2O3-ZrO2 catalysts: Effect of ZrO2 and preparation method of Al2O3-ZrO2. Korean Journal of Chemical Engineering, 2008, 25, 95-98.	1.2	37
66	Effect of support on hydrogen production by auto-thermal reforming of ethanol over supported nickel catalysts. Korean Journal of Chemical Engineering, 2008, 25, 236-238.	1.2	46
67	Production of middle distillate in a dual-bed reactor from synthesis gas through wax cracking: Effect of acid property of Pd-loaded solid acid catalysts on the wax conversion and middle distillate selectivity. Applied Catalysis B: Environmental, 2008, 83, 195-201.	10.8	35
68	Preparation of Ni/Al2O3–ZrO2 catalysts and their application to hydrogen production by steam reforming of LNG: Effect of ZrO2 content grafted on Al2O3. Catalysis Today, 2008, 138, 130-134.	2.2	27
69	Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous nickel–alumina xerogel catalysts: Effect of nickel content. Chemical Engineering Journal, 2008, 141, 298-304.	6.6	51
70	Hydrogen production by auto-thermal reforming of ethanol over nickel catalysts supported on Ce-modified mesoporous zirconia: Effect of Ce/Zr molar ratio. International Journal of Hydrogen Energy, 2008, 33, 5052-5059.	3.8	58
71	Effect of calcination temperature of mesoporous alumina xerogel (AX) supports on hydrogen production by steam reforming of liquefied natural gas (LNG) over Ni/AX catalysts. International Journal of Hydrogen Energy, 2008, 33, 7427-7434.	3.8	36
72	Hydrogen production by auto-thermal reforming of ethanol over Ni catalysts supported on ZrO2: Effect of preparation method of ZrO2 support. International Journal of Hydrogen Energy, 2008, 33, 7457-7463.	3.8	30

#	Article	IF	CITATIONS
73	Direct epoxidation of propylene with hydrogen peroxide over TS-1 catalysts: Effect of hydrophobicity of the catalysts. Catalysis Communications, 2008, 9, 2485-2488.	1.6	47
74	Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide by Heteropolyacid/Metal Oxide Catalysts. Solid State Phenomena, 2007, 119, 287-290.	0.3	17
75	Role and effect of molybdenum on the performance of Ni-Mo/γ-Al2O3 catalysts in the hydrogen production by auto-thermal reforming of ethanol. Journal of Molecular Catalysis A, 2007, 261, 276-281.	4.8	80
76	Hydrogen production by steam reforming of LNG over Ni/Al2O3–ZrO2 catalysts: Effect of Al2O3–ZrO2 supports prepared by a grafting method. Journal of Molecular Catalysis A, 2007, 268, 9-14.	4.8	52
77	Effect of SiO2-ZrO2 supports prepared by a grafting method on hydrogen production by steam reforming of liquefied natural gas over Ni/SiO2-ZrO2 catalysts. Journal of Power Sources, 2007, 168, 251-257.	4.0	20
78	Hydrogen production by steam reforming of liquefied natural gas over a nickel catalyst supported on mesoporous alumina xerogel. Journal of Power Sources, 2007, 173, 943-949.	4.0	32
79	Reduction potentials of heteropolyacid catalysts probed by scanning tunneling microscopy and UV-visible spectroscopy. Korean Journal of Chemical Engineering, 2007, 24, 51-54.	1.2	38
80	Hydrogen production by auto-thermal reforming of ethanol over Ni/γ-Al2O3 catalysts: Effect of second metal addition. Journal of Power Sources, 2006, 162, 1270-1274.	4.0	50
81	UV–visible absorption edge energy of heteropolyacids (HPAs) as a probe of catalytic performance of HPAs in the oxidative dehydrogenation of isobutyric acid. Journal of Molecular Catalysis A, 2006, 252, 252-255.	4.8	7
82	UV–vis spectroscopy studies of H3PMo12â^'xWxO40 heteropolyacid (HPA) catalysts in the solid state: Effects of water content and polyatom substitution. Journal of Molecular Catalysis A, 2005, 241, 227-232.	4.8	36
83	UV-visible spectroscopic study of solid state 12-molybdophosphoricacid catalyst. Reaction Kinetics and Catalysis Letters, 2005, 87, 85-91.	0.6	11
84	Catalytic Characteristics of Metal Catalysts and Nitrate Salt of a Tripodal Ligand in a Basic Medium for Postcombustion CO ₂ Capture Process. ACS Sustainable Chemistry and Engineering, 0, ,	3.2	1
85	SnO ₂ /ZnO Composite Hollow Nanofiber Electrocatalyst for Efficient CO ₂ Reduction to Formate. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	12