
Zhanyong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2793204/publications.pdf Version: 2024-02-01

ΖΗΛΝΥΟΝΟ ΜΑΝΟ

#	Article	IF	CITATIONS
1	Blending modification of PBS/PLA and its enzymatic degradation. Polymer Bulletin, 2018, 75, 533-546.	1.7	77
2	Antioxidant and immunological activity in vitro of polysaccharides from Gomphidius rutilus mycelium. Carbohydrate Polymers, 2013, 92, 2187-2192.	5.1	74
3	Enzymatic hydrolysis of polyester: Degradation of poly(ε-caprolactone) by Candida antarctica lipase and Fusarium solani cutinase. International Journal of Biological Macromolecules, 2020, 144, 183-189.	3.6	70
4	Enzymatic degradation of poly(butylene succinate) by cutinase cloned from Fusarium solani. Polymer Degradation and Stability, 2016, 134, 211-219.	2.7	62
5	Effect of Hydroxyl Monomers on the Enzymatic Degradation of Poly(ethylene succinate), Poly(butylene succinate), and Poly(hexylene succinate). Polymers, 2018, 10, 90.	2.0	45
6	Biodegradation of Polycaprolactone (PCL) with Different Molecular Weights by Candida antarcticaÂLipase. Journal of Polymers and the Environment, 2020, 28, 2947-2955.	2.4	42
7	Biodegradation of poly(butylene succinate) by Fusarium sp. FS1301 and purification and characterization of poly(butylene succinate) depolymerase. Polymer Degradation and Stability, 2015, 114, 1-7.	2.7	39
8	Enzymatic degradation of poly(butylene succinate) with different molecular weights by cutinase. International Journal of Biological Macromolecules, 2018, 111, 1040-1046.	3.6	39
9	Extraction of polysaccharides from Phellinus nigricans mycelia and their antioxidant activities in vitro. Carbohydrate Polymers, 2014, 99, 110-115.	5.1	37
10	Comparison of poly(butylene succinate) biodegradation by Fusarium solani cutinase and Candida antarctica lipase. Polymer Degradation and Stability, 2019, 164, 55-60.	2.7	34
11	Optimization of medium composition for exopolysaccharide production by Phellinus nigricans. Carbohydrate Polymers, 2014, 105, 200-206.	5.1	32
12	Antioxidant and immunological activities of polysaccharides from Gentiana scabra Bunge roots. Carbohydrate Polymers, 2014, 112, 114-118.	5.1	32
13	Extraction of crude polysaccharides from Gomphidius rutilus and their antioxidant activities in vitro. Carbohydrate Polymers, 2013, 94, 479-486.	5.1	31
14	Characterization and antioxidant activity in vitro and in vivo of polysaccharide purified from Rana chensinensis skin. Carbohydrate Polymers, 2015, 126, 17-22.	5.1	31
15	Difference in solid-state properties and enzymatic degradation of three kinds of poly(butylene) Tj ETQq1 1 0.7	'84314.rgBT 1.7	-/Oyerlock 1(
16	Optimization for the extraction of polysaccharides from Nostoc commune and its antioxidant and antibacterial activities. Journal of the Taiwan Institute of Chemical Engineers, 2015, 52, 14-21.	2.7	30
17	Biodegradation of Polystyrene by Tenebrio molitor, Galleria mellonella, and Zophobas atratus Larvae and Comparison of Their Degradation Effects. Polymers, 2021, 13, 3539.	2.0	30
18	Selective enzymatic degradation and porous morphology of poly(butylene succinate)/poly(lactic acid) blends. International Journal of Biological Macromolecules, 2019, 126, 436-442.	3.6	29

ZHANYONG WANG

#	Article	IF	CITATIONS
19	Antioxidant and immunological activity in vitro of polysaccharides from Phellinus nigricans mycelia. International Journal of Biological Macromolecules, 2014, 64, 139-143.	3.6	28
20	Preparation, characterization, and biodegradation of poly(butylene succinate)/cellulose triacetate blends. International Journal of Biological Macromolecules, 2018, 114, 373-380.	3.6	28
21	Purification and characterization of poly(<scp>L</scp> â€lactic acid) depolymerase from <i>Pseudomonas</i> sp. strain DSO4â€T. Polymer Engineering and Science, 2011, 51, 454-459.	1.5	26
22	Purification and Characterization of Extracellular Poly(β-hydroxybutyrate) Depolymerase from <i>Penicillium</i> sp. DS9701-D2. Polymer-Plastics Technology and Engineering, 2008, 48, 58-63.	1.9	25
23	Extraction and antioxidant activity of polysaccharides from Rana chensinensis skin. Carbohydrate Polymers, 2015, 115, 25-31.	5.1	25
24	Isolation, Identification, and Characterization of Polystyrene-Degrading Bacteria From the Gut of Galleria Mellonella (Lepidoptera: Pyralidae) Larvae. Frontiers in Bioengineering and Biotechnology, 2021, 9, 736062.	2.0	25
25	Optimization for the extraction of polysaccharides from Gentiana scabra Bunge and their antioxidant in vitro and anti-tumor activity in vivo. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1126-1132.	2.7	23
26	Optimisation of exopolysaccharide production by Gomphidius rutilus and its antioxidant activities in vitro. Carbohydrate Polymers, 2012, 87, 2299-2305.	5.1	22
27	Correlation between the chemical structure and enzymatic hydrolysis of Poly(butylene succinate), Poly(butylene adipate), and Poly(butylene suberate). Polymer Degradation and Stability, 2018, 158, 111-118.	2.7	19
28	Biodegradation of Polyhydroxybutyrate Film by <i>Pseudomonas mendocina</i> DS04-T. Polymer-Plastics Technology and Engineering, 2013, 52, 195-199.	1.9	18
29	Blending Modification of PHBV/PCL and its Biodegradation by Pseudomonas mendocina. Journal of Polymers and the Environment, 2017, 25, 156-164.	2.4	18
30	Purification and characterization of a novel poly(butylene succinate)-degrading enzyme from Aspergillus sp. XH0501-a. World Journal of Microbiology and Biotechnology, 2011, 27, 2591-2596.	1.7	17
31	Purification and characterization of an extracellular poly(3-hydroxybutyrate-co-3-hydroxyvalerate) depolymerase from Acidovorax sp. HB01. World Journal of Microbiology and Biotechnology, 2012, 28, 2395-2402.	1.7	14
32	Purification and characterization of two extracellular polyhydroxyalkanoate depolymerases from Pseudomonas mendocina. Biotechnology Letters, 2013, 35, 1919-1924.	1.1	13
33	Extraction and characterization of collagen hydrolysates from the skin of Rana chensinensis. 3 Biotech, 2018, 8, 181.	1.1	13
34	A review on thermoresponsive cell culture systems based on poly(<i>N</i> -isopropylacrylamide) and derivatives. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 371-382.	1.8	13
35	Preparation of porous materials by selective enzymatic degradation: effect of in vitro degradation and in vivo compatibility. Scientific Reports, 2020, 10, 7031.	1.6	11
36	SCREENING OF IRON- AND ZINC-ENRICHED YEAST STRAIN AND OPTIMIZATION OF CULTIVATION CONDITIONS. Preparative Biochemistry and Biotechnology, 2011, 41, 278-286.	1.0	10

ZHANYONG WANG

#	Article	IF	CITATIONS
37	Temperature and glucose dual-responsive carriers bearing poly(<i>N</i> -isopropylacrylamide) and phenylboronic acid for insulin-controlled release: A review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 577-587.	1.8	10
38	Production of 3-Hydroxybutyrate Monomers by Pseudomonas mendocina DS04-T Biodegraded Polyhydroxybutyrate. Journal of Polymers and the Environment, 2013, 21, 826-832.	2.4	9
39	Extraction Optimization of Polysaccharides From Corn Silk and Their Antioxidant Activities in vitro and in vivo. Frontiers in Pharmacology, 2021, 12, 738150.	1.6	9
40	Structural characterization, antioxidant activity, and immunological activity in vitro of polysaccharides from fruiting bodies of <i>Suillus granulatus</i> . Journal of Food Biochemistry, 2018, 42, e12515.	1.2	7
41	Multi-Responsive Behaviors of Copolymers Bearing N-Isopropylacrylamide with or without Phenylboronic Acid in Aqueous Solution. Polymers, 2018, 10, 293.	2.0	7
42	Blending Modification of PHBV/PBS/PEG and its Biodegradation. Polymer-Plastics Technology and Engineering, 2017, 56, 1128-1135.	1.9	6
43	Effects of monomer composition on physical properties and enzymatic hydrolyzability of poly(butylene succinate―co â€hexamethylene succinate)s. Polymer Engineering and Science, 2021, 61, 379-387.	1.5	5
44	Optimization extraction process of polysaccharides from Suillus granulatus and their antioxidant and immunological activities In vitro. Pharmacognosy Magazine, 2016, 12, 277.	0.3	4
45	Biodegradation of polybutylene adipate-co-terephthalate by Priestia megaterium, Pseudomonas mendocina, and Pseudomonas pseudoalcaligenes following incubation in the soil. Chemosphere, 2022, 307, 135700.	4.2	4
46	Biodegradation of P(3HB-co-4HB) powder by Pseudomonas mendocina for preparation low-molecular-mass P(3HB-co-4HB). 3 Biotech, 2017, 7, 281.	1.1	3
47	Immobilization of Fusarium solani Cutinase onto Magnetic Genipin-Crosslinked Chitosan Beads. Catalysts, 2021, 11, 1158.	1.6	3
48	Gene Cloning and Characterization of a Poly(l-Lactic Acid) Depolymerase from Pseudomonas sp. Strain DS04-T. Journal of Polymers and the Environment, 2011, 19, 827-833.	2.4	1
49	Optimization of medium composition for 3â€hydroxycarboxylic acid production by <i>Pseudomonas mendocina</i> –biodegraded polyhydroxybutyrate. Biotechnology and Applied Biochemistry, 2015, 62, 260-267.	1.4	1