Giuseppe Barbieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/279318/publications.pdf

Version: 2024-02-01

194 papers 6,108 citations

43 h-index 71 g-index

211 all docs

211 docs citations

times ranked

211

4958 citing authors

#	Article	IF	CITATIONS
1	H2 permeation and its influence on gases through a SAPO-34 zeolite membrane. International Journal of Hydrogen Energy, 2023, 48, 12036-12044.	3.8	2
2	Residual stress measurement on Titanium Grade 5Âand Inconel 625 thin dissimilar welded joints by contour method. Journal of Materials Science, 2022, 57, 671-686.	1.7	7
3	Multi-step membrane process for biogas upgrading. Journal of Membrane Science, 2022, 652, 120454.	4.1	13
4	Advanced membrane-based processes for biogas upgrading., 2022,, 345-373.		2
5	Long-term performance of highly selective carbon hollow fiber membranes for biogas upgrading in the presence of H2S and water vapor. Chemical Engineering Journal, 2022, 448, 137615.	6.6	17
6	CO2 separation from binary mixtures of CH4, N2, and H2 by using SSZ-13 zeolite membrane. Separation and Purification Technology, 2021, 256, 117796.	3.9	32
7	Photocatalytic membranes and membrane reactors for CO2 valorization., 2021,, 523-539.		O
8	Materials for High Temperature Liquid Lead Storage for Concentrated Solar Power (CSP) Air Tower Systems. Materials, 2021, 14, 3261.	1.3	4
9	Polysulfone and organo-modified graphene oxide for new hybrid proton exchange membranes: A green alternative for high-efficiency PEMFCs. Electrochimica Acta, 2021, 380, 138214.	2.6	28
10	Phosphonium ionic liquid-polyacrylate copolymer membranes for improved CO2 separations. Journal of Membrane Science, 2021, 635, 119479.	4.1	17
11	Silica sol gel assisted defect patching of SSZ-13 zeolite membranes for CO2/CH4 separation. Separation and Purification Technology, 2021, 277, 119518.	3.9	22
12	Membrane Engineering for Biogas Valorization. Frontiers in Chemical Engineering, 2021, 3, .	1.3	10
13	CO ₂ Separation via a DDR Membrane: Mutual Influence of Mixed Gas Permeation. Industrial & Lamp; Engineering Chemistry Research, 2020, 59, 7054-7060.	1.8	14
14	Mutual influence in permeation of CO2-containing mixtures through a SAPO-34 membrane. Journal of Membrane Science, 2020, 595, 117534.	4.1	11
15	Analysis of membrane unit performance in presence of wet CO2-containing mixtures. Chemical Engineering Research and Design, 2020, 153, 721-727.	2.7	3
16	CO2 separation from humidified ternary gas mixtures using a polydecylmethylsiloxane composite membrane. Fuel Processing Technology, 2020, 210, 106550.	3.7	11
17	Analysis of Nanoprecipitation Effect on Toughness Behavior in Warm Worked AA7050 Alloy. Metals, 2020, 10, 1693.	1.0	2
18	Highly-performing and low-cost nanostructured membranes based on Polysulfone and layered doubled hydroxide for high-temperature proton exchange membrane fuel cells. Journal of Power Sources, 2020, 471, 228440.	4.0	37

#	Article	IF	Citations
19	Trichloroethylene/Nitrogen Mixture Separation via membrane operations: Comparison with traditional technologies. Separation and Purification Technology, 2020, 251, 117344.	3.9	2
20	Methanol Conversion to Dimethyl Ether in Catalytic Zeolite Membrane Reactors. ACS Sustainable Chemistry and Engineering, 2020, 8, 10471-10479.	3.2	34
21	Recovery of water and contaminants from cooling tower plume. Environmental Engineering Research, 2020, 25, 222-229.	1.5	9
22	Influence of Lipase Immobilization Mode on Ethyl Acetate Hydrolysis in a Continuous Solid–Gas Biocatalytic Membrane Reactor. Bioconjugate Chemistry, 2019, 30, 2238-2246.	1.8	9
23	Membrane condenser as emerging technology for water recovery and gas pre-treatment: current status and perspectives. BMC Chemical Engineering, $2019, 1, \dots$	3.4	13
24	Water vapor permeation and its influence on gases through a zeolite-4A membrane. Journal of Membrane Science, 2019, 574, 154-163.	4.1	8
25	CO2 reduction by C3N4-TiO2 Nafion photocatalytic membrane reactor as a promising environmental pathway to solar fuels. Applied Catalysis B: Environmental, 2019, 255, 117779.	10.8	46
26	Mutual influence of mixed-gas permeation in thermally rearranged poly(benzoxazole-co-imide) polymer membranes. Journal of Membrane Science, 2019, 580, 202-213.	4.1	25
27	PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances. Journal of Membrane Science, 2019, 574, 270-281.	4.1	39
28	Membrane Engineering in CO2 Separations. , 2019, , 14-38.		0
29	Oxidative treatment effect on TiH ₂ powders. Surface and Interface Analysis, 2018, 50, 1195-1199.	0.8	4
30	Support mass transfer resistance of Pd/ceramic composite membranes in the presence of sweep gas. Journal of Membrane Science, 2018, 550, 365-376.	4.1	20
31	Membrane reactors for low temperature applications: An overview. Chemical Engineering and Processing: Process Intensification, 2018, 124, 282-307.	1.8	51
32	Dry Reforming of Methane in a Pd-Ag Membrane Reactor: Thermodynamic and Experimental Analysis. ChemEngineering, 2018, 2, 48.	1.0	12
33	6. Membrane reactors and membrane bioreactors. , 2018, , 143-202.		0
34	An Investigation into the Stability of Graphitic C ₃ N ₄ as a Photocatalyst for CO ₂ Reduction. Journal of Physical Chemistry C, 2018, 122, 28727-28738.	1.5	56
35	4. Membrane gas separation. , 2018, , 71-104.		О
36	CO ₂ to Liquid Fuels: Photocatalytic Conversion in a Continuous Membrane Reactor. ACS Sustainable Chemistry and Engineering, 2018, 6, 8743-8753.	3.2	54

#	Article	IF	Citations
37	CO ₂ /H ₂ Selectivity Prediction of NaY, DD3R, and Silicalite Zeolite Membranes. Industrial & DD3R, amp; Engineering Chemistry Research, 2018, 57, 11431-11438.	1.8	13
38	Discrimination among gas translation, surface and Knudsen diffusion in permeation through zeolite membranes. Journal of Membrane Science, 2018, 564, 166-173.	4.1	37
39	Fatigue assessment of Ti-6Al-4V titanium alloy laser welded joints in absence of filler material by means of full-field techniques. Frattura Ed Integrita Strutturale, 2018, 12, 171-181.	0.5	0
40	Self-assembly of tissue spheroids on polymeric membranes. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2090-2103.	1.3	12
41	Sorption and Diffusion of CO2/N2 in gas mixture in thermally-rearranged polymeric membranes: A molecular investigation. Journal of Membrane Science, 2017, 528, 135-146.	4.1	52
42	Membrane condenser configurations for water recovery from waste gases. Separation and Purification Technology, 2017, 181, 60-68.	3.9	37
43	Light gases saturation loading dependence on temperature in LTA 4A zeolite. Microporous and Mesoporous Materials, 2017, 249, 67-77.	2.2	7
44	Disk-laser Welding of Ti-6Al-4V Titanium Alloy Plates in T-joint Configuration. Procedia Engineering, 2017, 183, 219-226.	1.2	9
45	Thermally rearranged mixed matrix membranes for CO2 separation: An aging study. International Journal of Greenhouse Gas Control, 2017, 61, 16-26.	2.3	45
46	Investigation on laser welding of Ti-6Al-4V plates in corner joint. Advances in Mechanical Engineering, 2017, 9, 168781401668554.	0.8	7
47	Knudsen and surface diffusion competing for gas permeation inside silicalite membranes. Journal of Membrane Science, 2017, 523, 456-469.	4.1	44
48	Electron Beam Welding of IN792 DS: Effects of Pass Speed and PWHT on Microstructure and Hardness. Materials, 2017, 10, 1033.	1.3	19
49	Laser Beam Welding of a Ti–6Al–4V Support Flange for Buy-to-Fly Reduction. Metals, 2017, 7, 183.	1.0	12
50	3.2 Modeling and Simulation of Membrane Reactors and Catalytic Membrane Reactors., 2017,, 30-54.		2
51	Membrane Engineering for the Treatment of Gases. , 2017, , .		3
52	Process Intensification via Membrane Reactors, the DEMCAMER Project. Processes, 2016, 4, 16.	1.3	13
53	An Integrated Membrane Process for Butenes Production. Processes, 2016, 4, 42.	1.3	3
54	CO2 conversion in a photocatalytic continuous membrane reactor. RSC Advances, 2016, 6, 67418-67427.	1.7	34

#	Article	IF	Citations
55	Welding of IN792 DS superalloy by electron beam. Surface and Interface Analysis, 2016, 48, 483-487.	0.8	6
56	CO2/CH4 separation by means of Matrimid hollow fibre membranes. Applied Petrochemical Research, 2016, 6, 439-450.	1.3	21
57	In situ restoring of aged thermally rearranged gas separation membranes. Journal of Membrane Science, 2016, 520, 671-678.	4.1	24
58	A novel modelling approach to surface and Knudsen multicomponent diffusion through NaY zeolite membranes. Microporous and Mesoporous Materials, 2016, 235, 87-99.	2.2	34
59	IN792 DS Superalloy: Optimization of EB Welding and Post-Welding Heat Treatments. Materials Science Forum, 2016, 879, 175-180.	0.3	4
60	Investigation of skin-core joints in aluminium foam sandwich panels by EDS and XPS. Surface and Interface Analysis, 2016, 48, 479-482.	0.8	1
61	Concentration polarization distribution along Pd-based membrane reactors: A modelling approach applied to Water-Gas Shift. International Journal of Hydrogen Energy, 2016, 41, 2660-2670.	3.8	26
62	LoLiPEM: Long life proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2016, 41, 1921-1934.	3.8	12
63	Membrane Engineering and its Role in Oil Refining and Petrochemical Industry. Advances in Chemical and Materials Engineering Book Series, 2016, , 116-149.	0.2	1
64	Continuous Stirred Tank Membrane Reactor (CST-MR)., 2016,, 448-451.		0
65	CO Selective Oxidation. , 2016, , 420-422.		0
66	Extraction Index. , 2016, , 755-756.		0
67	Water Gas Shift (WGS). , 2016, , 1990-1992.		О
68	Hydrogen Production by Membrane Reactors. , 2016, , 990-994.		0
69	Sweep Gas in a Membrane Reactor. , 2016, , 1871-1872.		0
70	Mechanical Behavior of Aluminum Sandwiches Made by Laser Welding. Procedia Engineering, 2015, 109, 427-434.	1.2	4
71	Evaluation of pureâ€component adsorption properties of silicalite based on the <scp>L</scp> angmuir and <scp>S</scp> ips models. AICHE Journal, 2015, 61, 3911-3922.	1.8	12
72	Fabrication of thermally rearranged (TR) polybenzoxazole hollow fiber membranes with superior CO2/N2 separation performance. Journal of Membrane Science, 2015, 490, 129-138.	4.1	56

#	Article	IF	Citations
73	Welding of high-resilience martensitic stainless steel for hydrodynamic components in innovative seacraft: a comparison of traditional and HDE technologies. Welding International, 2015, 29, 40-53.	0.3	1
74	Process Intensification for greenhouse gas separation from biogas: More efficient process schemes based on membrane-integrated systems. International Journal of Greenhouse Gas Control, 2015, 35, 18-29.	2.3	44
75	PVDF-MFI mixed matrix membranes as VOCs adsorbers. Microporous and Mesoporous Materials, 2015, 207, 126-133.	2.2	53
76	Separation of CO2 from humidified ternary gas mixtures using thermally rearranged polymeric membranes. Journal of Membrane Science, 2015, 492, 257-262.	4.1	54
77	Evaluation of Pure-Component Adsorption Properties of DD3R Based on the Langmuir and Sips Models. Journal of Chemical & Data, 2015, 60, 2343-2355.	1.0	9
78	Syngas upgrading in a membrane reactor with thin Pd-alloy supported membrane. International Journal of Hydrogen Energy, 2015, 40, 10883-10893.	3.8	49
79	Estimation of Langmuir and Sips Models Adsorption Parameters for NaX and NaY FAU Zeolites. Journal of Chemical & Chemical	1.0	24
80	Study of the separation properties of FAU membranes constituted by hierarchically assembled nanozeolites. Separation and Purification Technology, 2015, 156, 321-327.	3.9	20
81	Numerical modeling of heat transfer and fluid flow in hybrid laser–TIG welding of aluminum alloy AA6082. International Journal of Advanced Manufacturing Technology, 2015, 77, 2067-2082.	1.5	40
82	Membrane engineering for environmental protection and sustainable industrial growth: Options for water and gas treatment. Environmental Engineering Research, 2015, 20, 307-328.	1.5	35
83	Water Gas Shift (WGS). , 2015, , 1-4.		3
84	Continuous Stirred Tank Membrane Reactor (CST-MR). , 2015, , 1-4.		0
85	Extraction Index. , 2015, , 1-2.		0
86	Retentate., 2015,, 1-1.		0
87	Permeate. , 2015, , 1-1.		0
88	CO Selective Oxidation. , 2015, , 1-3.		0
89	Pd-Based Tubular Membrane Reactor. , 2015, , 1-4.		0
90	Hydrogen Production by Membrane Reactors. , 2015, , 1-4.		0

#	Article	IF	Citations
91	Water recovery from humidified waste gas streams: Quality control using membrane condenser technology. Chemical Engineering and Processing: Process Intensification, 2014, 86, 196-203.	1.8	40
92	Engineering evaluation of CO2 separation by membrane gas separation systems. Journal of Membrane Science, 2014, 454, 305-315.	4.1	81
93	Waste Gaseous Streams: From Environmental Issue to Source of Water by Using Membrane Condensers. Clean - Soil, Air, Water, 2014, 42, 1145-1153.	0.7	38
94	ECTFE membrane preparation for recovery of humidified gas streams using membrane condenser. Reactive and Functional Polymers, 2014, 79, 1-7.	2.0	71
95	Coupled influence of non-ideal diffusion and multilayer asymmetric porous supports on Sieverts law pressure exponent for hydrogen permeation in composite Pd-based membranes. International Journal of Hydrogen Energy, 2014, 39, 2201-2214.	3.8	33
96	Energy and mass intensities in hydrogen upgrading by a membrane reactor. Fuel Processing Technology, 2014, 118, 278-286.	3.7	18
97	Polyimide hollow fiber membranes for CO2 separation from wet gas mixtures. Brazilian Journal of Chemical Engineering, 2014, 31, 1023-1034.	0.7	37
98	Sieverts law pressure exponent for hydrogen permeation through Pd-based membranes: Coupled influence of non-ideal diffusion and multicomponent external mass transfer. International Journal of Hydrogen Energy, 2013, 38, 16229-16244.	3.8	44
99	Liquid phase benzene hydroxylation to phenol using semi-batch and continuous membrane reactors. Separation and Purification Technology, 2013, 107, 195-203.	3.9	10
100	Membrane Condenser as a New Technology for Water Recovery from Humidified "Waste―Gaseous Streams. Industrial & Description (1998) Engineering Chemistry Research, 2013, 52, 1160-1167.	1.8	66
101	Direct Conversion of <i>n</i> -Butane to Isobutene in a Membrane Reactor: Thermodynamic Analysis. Industrial & Direct Conversion of <i>n</i> -Butane to Isobutene in a Membrane Reactor: Thermodynamic Analysis. Industrial & Direct Conversion of <i>n</i> -Butane to Isobutene in a Membrane Reactor: Thermodynamic Analysis. Industrial & Direct Conversion of <i>n</i> -Butane to Isobutene in a Membrane Reactor: Thermodynamic Analysis. Industrial & Direct Conversion of <i>n</i> -Butane to Isobutene in a Membrane Reactor: Thermodynamic Analysis. Industrial & Direct Conversion of <i>n</i> -Butane to Isobutene in a Membrane Reactor: Thermodynamic Analysis. Industrial & Direct Conversion of <i>n</i> -Butane to Isobutene in a Membrane Reactor: Thermodynamic Analysis. Industrial & Direct Conversion of <i>n</i> -Butane to Isobutene in a Membrane Reactor: Thermodynamic Analysis. Industrial & Direct Conversion of <i>n</i> -Butane to Isobutene in a Membrane Reactor: Thermodynamic Analysis. Industrial & Direct Conversion of <i>n</i> -Butane to Isobutene in a Membrane Reactor: Thermodynamic Analysis. Industrial & Direct Conversion of <i>n</i> -Butane Thermodynamic Analysis of <	1.8	12
102	Stabilization of Sulfonated Aromatic Polymer (SAP) Membranes Based on SPEEKâ€WC for PEMFCs. Fuel Cells, 2013, 13, 86-97.	1.5	9
103	EBW of AA 6061 T651 aluminium alloy cold plates for the space guinea pig living unit cooling system. Welding International, 2012, 26, 360-369.	0.3	2
104	Water Recovery from Waste Gaseous Streams: An Application of Hydrophobic Membranes. Procedia Engineering, 2012, 44, 202-203.	1.2	3
105	Ex–situ Characterization of Stabilized Sulfonated Aromatic Polymer (SAP) Membranes for Applications in PEMFCs. Procedia Engineering, 2012, 44, 799-800.	1.2	0
106	Syngas Upgrading by High Temperature WGS Reaction in a Single Stage Membrane Reactor. Procedia Engineering, 2012, 44, 1180-1182.	1.2	0
107	Medium/high temperature water gas shift reaction in a Pd–Ag membrane reactor: an experimental investigation. RSC Advances, 2012, 2, 226-233.	1.7	27
108	Synthesis of FAU–type Zeolite Membrane for Gas Separation. Procedia Engineering, 2012, 44, 699-700.	1.2	1

#	Article	IF	CITATIONS
109	Evaluation of Membranes Transport Properties for PEMFC: A New Approach. Procedia Engineering, 2012, 44, 698.	1.2	O
110	Process intensification strategies and membrane engineering. Green Chemistry, 2012, 14, 1561.	4.6	101
111	Process Intensification by Membrane Reactors: Highâ€√emperature Water Gas Shift Reaction as Single Stage for Syngas Upgrading. Chemical Engineering and Technology, 2012, 35, 1238-1248.	0.9	27
112	Process intensification and fuel cells using a Multi-Source Multi-Product approach. Chemical Engineering and Processing: Process Intensification, 2012, 51, 88-108.	1.8	7
113	Influence of the preparation conditions on the properties of polymeric and hybrid cation exchange membranes. Electrochimica Acta, 2012, 66, 164-172.	2.6	19
114	New approach for the evaluation of membranes transport properties for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2012, 205, 222-230.	4.0	29
115	The effect of operating conditions on the performance of hollow fiber membrane modules for CO2/N2 separation. Journal of Industrial and Engineering Chemistry, 2012, 18, 205-211.	2.9	25
116	Pd-based membrane reactors for one-stage process of water gas shift. RSC Advances, 2011, 1, 651.	1.7	43
117	Chapter 19. New Metrics in Membrane Gas Separation. , 2011, , 279-301.		4
118	Integrated membrane system for pure hydrogen production: A Pd–Ag membrane reactor and a PEMFC. Fuel Processing Technology, 2011, 92, 166-174.	3.7	17
119	Chapter 12. Membrane Reactors in Hydrogen Production. , 2011, , 87-109.		6
120	Chapter 17. Zeolite Membranes for Gas Separations. , 2011, , 223-252.		5
121	Chapter 14. Polarization and Inhibition by Carbon Monoxide in Palladium-based Membranes. , 2011, , 137-161.		1
122	On the role of the coupled effect of Inhibition by CO and Concentration Polarization on Hydrogen Permeation through Pd-based Membranes. Transactions of the Materials Research Society of Japan, 2011, 36, 225-228.	0.2	1
123	Coupling Newton-Raphson and Bisection Solving Methods to Simulate Hydrogen Permeation through Pd-based Membranes with Inhibition by CO and Concentration Polarization. , 2010, , .		O
124	Estimating limit conversion for methane steam reforming in a palladium membrane reactor using countercurrent sweep gas. Asia-Pacific Journal of Chemical Engineering, 2010, 5, 48-59.	0.8	4
125	Membrane technologies for CO2 separation. Journal of Membrane Science, 2010, 359, 115-125.	4.1	767
126	In-line formation of chemically cross-linked P84 \hat{A}^{\otimes} co-polyimide hollow fibre membranes for H2/CO2 separation. Separation and Purification Technology, 2010, 76, 132-139.	3.9	33

#	Article	IF	CITATIONS
127	Pd/Ag-based membrane reactors on small scale: Assessment of the feed pressure and design parameters effect on the performance. Chemical Engineering and Processing: Process Intensification, 2010, 49, 722-731.	1.8	11
128	Evaluation of membrane reactor with hydrogen-selective membrane in methane steam reforming. Chemical Engineering Science, 2010, 65, 1159-1166.	1.9	27
129	H ₂ Separation From H ₂ /N ₂ and H ₂ /CO Mixtures with Co-Polyimide Hollow Fiber Module. Separation Science and Technology, 2010, 46, 1-13.	1.3	40
130	Inhibition by CO and Polarization in Pd-Based Membranes: A Novel Permeation Reduction Coefficient. Journal of Physical Chemistry B, 2010, 114, 12264-12276.	1.2	52
131	Sieverts Law Empirical Exponent for Pd-Based Membranes: Critical Analysis in Pure H ₂ Permeation. Journal of Physical Chemistry B, 2010, 114, 6033-6047.	1.2	92
132	Effect of the preparation conditions on the formation of asymmetric poly(vinylidene fluoride) hollow fibre membranes with a dense skin. European Polymer Journal, 2010, 46, 1713-1725.	2.6	65
133	Modelling and Simulation of Catalytic Membrane Reactors. , 2010, , 57-79.		0
134	Fracture Behaviour of Nickel-Titanium Laser Welded Joints. Journal of Materials Engineering and Performance, 2009, 18, 569-574.	1.2	45
135	A novel seeding procedure for preparing tubular NaY zeolite membranes. Microporous and Mesoporous Materials, 2009, 119, 129-136.	2.2	56
136	Concentration polarization analysis in self-supported Pd-based membranes. Separation and Purification Technology, 2009, 66, 613-624.	3.9	110
137	Hydrogen mixture separation with PEEK-WC asymmetric membranes. Separation and Purification Technology, 2009, 69, 195-204.	3.9	14
138	Upgrading of a syngas mixture for pure hydrogen production in a Pd–Ag membrane reactor. Chemical Engineering Science, 2009, 64, 3448-3454.	1.9	67
139	Pd-Based Membrane Reactor for Syngas Upgrading. Energy & Sump; Fuels, 2009, 23, 5073-5076.	2.5	21
140	An innovative configuration of a Pd-based membrane reactor for the production of pure hydrogen. Journal of Power Sources, 2008, 182, 160-167.	4.0	112
141	A novel model equation for the permeation of hydrogen in mixture with carbon monoxide through Pd–Ag membranes. Separation and Purification Technology, 2008, 61, 217-224.	3.9	71
142	Hydrogen purification from carbon monoxide by means of selective oxidation using zeolite catalytic membranes. Separation and Purification Technology, 2008, 62, 629-635.	3.9	54
143	Reaction rate profiles in long palladium membrane reactors for methane steam reforming. Desalination, 2008, 233, 359-366.	4.0	11
144	A PEMFC and H2 membrane purification integrated plant. Chemical Engineering and Processing: Process Intensification, 2008, 47, 1081-1089.	1.8	24

#	Article	IF	Citations
145	Modelling and simulation of hydrogen permeation through supported Pd-alloy membranes with a multicomponent approach. Chemical Engineering Science, 2008, 63, 2149-2160.	1.9	110
146	The influence of the CO inhibition effect on the estimation of the H2 purification unit surface. International Journal of Hydrogen Energy, 2008, 33, 4183-4192.	3.8	39
147	Mathematical Modeling of Pdâ€Alloy Membrane Reactors. Membrane Science and Technology, 2008, , 325-400.	0.5	11
148	A porous stainless steel supported silica membrane for WGS reaction in a catalytic membrane reactor. Chemical Engineering Science, 2007, 62, 5621-5626.	1.9	51
149	Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials, 2007, 28, 5487-5497.	5.7	222
150	WGS reaction in a membrane reactor using a porous stainless steel supported silica membrane. Chemical Engineering and Processing: Process Intensification, 2007, 46, 119-126.	1.8	84
151	Sodium tungstate immobilized on plasma-treated PVDF membranes: New efficient heterogeneous catalyst for oxidation of secondary amines to nitrones. Journal of Molecular Catalysis A, 2007, 273, 32-38.	4.8	7
152	Simulation study of water gas shift reaction in a membrane reactor. Journal of Membrane Science, 2007, 306, 329-340.	4.1	116
153	Fetuin-A gene expression, synthesis and release in primary human hepatocytes cultured in a galactosylated membrane bioreactor. Biomaterials, 2007, 28, 4836-4844.	5.7	27
154	Diffusive and convective transport in HF membrane reactors for biomedical applications. Desalination, 2006, 199, 135-137.	4.0	2
155	Human galactosylated membrane bioreactor for the long-term maintenance of liver specific functions. Desalination, 2006, 199, 147-149.	4.0	3
156	A PEMFC and H2 membrane purification integrated plant. Desalination, 2006, 199, 156-158.	4.0	2
157	H2 for PEM-FC: effect of CO in the purification by means of Pd-based membranes. Desalination, 2006, 200, 239-241.	4.0	15
158	Theoretical study of H2 permeation through supported Pd-based membranes. Desalination, 2006, 200, 242-244.	4.0	2
159	Modeling of two separate phase enzyme membrane reactors for kinetic resolution of naproxen ester. Desalination, 2006, 200, 514-515.	4.0	8
160	Porous stainless steel supported silica membrane for WGS reaction. Desalination, 2006, 200, 681-683.	4.0	6
161	Equilibrium of a Pd-based membrane reactor. Desalination, 2006, 200, 679-680.	4.0	6
162	Limit conversion of a palladium membrane reactor using counter-current sweep gas on methane steam reforming. Desalination, 2006, 200, 708-709.	4.0	5

#	Article	IF	CITATIONS
163	Catalytic zeolite membrane reactors for the selective CO oxidation. Desalination, 2006, 200, 702-704.	4.0	6
164	Sodium tungstate immobilised on plasma treated membranes: preparation, characterization and use in flat membrane reactors. Desalination, 2006, 200, 697-699.	4.0	0
165	Membrane bioreactor using pig hepatocytes for in vitro evaluation of anti-inflammatory drugs. Catalysis Today, 2006, 118, 172-180.	2.2	14
166	An Exergetic Analysis of Membrane Unit Operations Integrated in the Ethylene Production Cycle. Chemical Engineering Research and Design, 2006, 84, 405-411.	2.7	12
167	Catalytic (Pt-Y) membranes for the purification of H2-rich streams. Catalysis Today, 2006, 118, 90-97.	2.2	38
168	Diffusive and convective transport through hollow fiber membranes for liver cell culture. Journal of Biotechnology, 2005, 117, 309-321.	1.9	68
169	Engineering Evaluations of a Catalytic Membrane Reactor for the Water Gas Shift Reaction. Industrial & Lamp; Engineering Chemistry Research, 2005, 44, 7676-7683.	1.8	53
170	Gusev and Suter calculation of the diffusion coefficients of light gases in silicalite-1 membrane and silica-sodalite zeolite. Separation and Purification Technology, 2004, 36, 215-228.	3.9	15
171	Applications of membrane unit operations in ethylene process. Clean Technologies and Environmental Policy, 2004, 6, 78-95.	2.1	27
172	Membrane technology applied to the n-butane oxidation in maleic anhydride production. Chemical Engineering and Processing: Process Intensification, 2003, 42, 45-54.	1.8	1
173	Permeation properties of a thin silicalite-1 (MFI) membrane. Journal of Membrane Science, 2003, 222, 181-190.	4.1	110
174	Equilibrium conversion for a Pd-based membrane reactor. Dependence on the temperature and pressure. Chemical Engineering and Processing: Process Intensification, 2003, 42, 231-236.	1.8	74
175	Membrane air separation for intensification of coal gasification process. Fuel Processing Technology, 2003, 80, 119-141.	3.7	23
176	Simulation of CO2 hydrogenation with CH3OH removal in a zeolite membrane reactor. Chemical Engineering Journal, 2002, 85, 53-59.	6.6	72
177	Conversionâ^'Temperature Diagram for a Palladium Membrane Reactor. Analysis of an Endothermic Reaction:  Methane Steam Reforming. Industrial & Engineering Chemistry Research, 2001, 40, 2017-2026.	1.8	55
178	Effect of energy transport on a palladium-based membrane reactor for methane steam reforming process. Catalysis Today, 2001, 67, 85-99.	2.2	71
179	Direct contact membrane distillation: modelling and concentration experiments. Journal of Membrane Science, 2000, 166, 1-11.	4.1	312
180	Integrated membrane operations in desalination processes. Desalination, 1999, 122, 141-145.	4.0	101

#	Article	IF	CITATIONS
181	Theoretical and experimental analysis of methane steam reforming in a membrane reactor. Canadian Journal of Chemical Engineering, 1999, 77, 698-706.	0.9	61
182	Methane Steam Reforming Analysis in a Palladium-Based Catalytic Membrane Reactor. Industrial & Engineering Chemistry Research, 1997, 36, 3369-3374.	1.8	94
183	Simulation of the Methane Steam Re-forming Process in a Catalytic Pd-Membrane Reactor. Industrial & Lamp; Engineering Chemistry Research, 1997, 36, 2121-2127.	1.8	134
184	Combustion processes in CSTR. Bifurcation analysis of the H2–O2system. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2989-2996.	1.7	8
185	Modeling Methane Coot Flames and Ignitions. Combustion Science and Technology, 1995, 106, 83-102.	1.2	13
186	Low and Intermediate Temperature Ethane Combustion Modeling. Combustion Science and Technology, 1994, 98, 95-122.	1.2	14
187	Membrane reactor in fatty acid production. Journal of Membrane Science, 1988, 36, 525-534.	4.1	18
188	Ceramic Membranes in Carbon Dioxide Capture: Applications and Potentialities. Advances in Science and Technology, 0, , .	0.2	5
189	Welding of Automotive Aluminum Alloys by Laser Wobbling Processing. Materials Science Forum, 0, 879, 1057-1062.	0.3	10
190	Welding of IN792 DS Superalloy by High Energy Density Techniques. Materials Science Forum, 0, 884, 166-177.	0.3	2
191	CHAPTER 1. Membrane Reactors for Hydrogen Production. , 0, , 1-29.		4
192	CHAPTER 1. Modelling of Gas Separation in Thermally Rearranged Polymeric Membranes. , 0, , 1-27.		0
193	CHAPTER 7. Mass Transport in Zeolite Membranes for Gas Treatment: A New Insight. , 0, , 183-215.		0
194	CHAPTER 5. Polarization and CO-inhibition in Pd-based Membranes and Membrane Reactors., 0,, 139-176.		0