
Scott R White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2793103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature, 2009, 459, 68-72.	13.7	1,446
2	Self-healing materials with microvascularÂnetworks. Nature Materials, 2007, 6, 581-585.	13.3	1,379
3	Mechanically-Induced Chemical Changes in Polymeric Materials. Chemical Reviews, 2009, 109, 5755-5798.	23.0	1,130
4	Biasing reaction pathways with mechanical force. Nature, 2007, 446, 423-427.	13.7	722
5	Selfâ€Healing Polymer Coatings. Advanced Materials, 2009, 21, 645-649.	11.1	673
6	Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nature Materials, 2003, 2, 265-271.	13.3	627
7	Triggered Release from Polymer Capsules. Macromolecules, 2011, 44, 5539-5553.	2.2	534
8	Effect of microcapsule size on the performance of self-healing polymers. Polymer, 2007, 48, 3520-3529.	1.8	436
9	Microencapsulation of Isocyanates for Self-Healing Polymers. Macromolecules, 2008, 41, 9650-9655.	2.2	412
10	Biomimetic Selfâ€Healing. Angewandte Chemie - International Edition, 2015, 54, 10428-10447.	7.2	370
11	Selfâ€Healing Materials with Interpenetrating Microvascular Networks. Advanced Materials, 2009, 21, 4143-4147.	11.1	366
12	Mechanophore-Linked Addition Polymers. Journal of the American Chemical Society, 2007, 129, 13808-13809.	6.6	350
13	Polymers with autonomous life-cycle control. Nature, 2016, 540, 363-370.	13.7	322
14	Malleable and Recyclable Poly(ureaâ€urethane) Thermosets bearing Hindered Urea Bonds. Advanced Materials, 2016, 28, 7646-7651.	11.1	318
15	Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization. Nature, 2018, 557, 223-227.	13.7	312
16	Self-healing thermoset using encapsulated epoxy-amine healing chemistry. Polymer, 2012, 53, 581-587.	1.8	308
17	Autonomic Restoration of Electrical Conductivity. Advanced Materials, 2012, 24, 398-401.	11.1	287
18	Solvent-Promoted Self-Healing Epoxy Materials. Macromolecules, 2007, 40, 8830-8832.	2.2	265

#	Article	IF	CITATIONS
19	Delivery of Twoâ€Part Selfâ€Healing Chemistry via Microvascular Networks. Advanced Functional Materials, 2009, 19, 1399-1405.	7.8	260
20	Full Recovery of Fracture Toughness Using a Nontoxic Solventâ€Based Selfâ€Healing System. Advanced Functional Materials, 2008, 18, 1898-1904.	7.8	241
21	Force-Induced Redistribution of a Chemical Equilibrium. Journal of the American Chemical Society, 2010, 132, 16107-16111.	6.6	234
22	Restoration of Large Damage Volumes in Polymers. Science, 2014, 344, 620-623.	6.0	230
23	Continuous Selfâ€Healing Life Cycle in Vascularized Structural Composites. Advanced Materials, 2014, 26, 4302-4308.	11.1	209
24	Threeâ€Ðimensional Microvascular Fiberâ€Reinforced Composites. Advanced Materials, 2011, 23, 3654-3658.	11.1	203
25	Robust, Double-Walled Microcapsules for Self-Healing Polymeric Materials. ACS Applied Materials & Interfaces, 2010, 2, 1195-1199.	4.0	202
26	Catalyst Morphology and Dissolution Kinetics of Self-Healing Polymers. Chemistry of Materials, 2006, 18, 1312-1317.	3.2	199
27	Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nature Chemistry, 2014, 6, 623-628.	6.6	198
28	Proton-Coupled Mechanochemical Transduction: A Mechanogenerated Acid. Journal of the American Chemical Society, 2012, 134, 12446-12449.	6.6	194
29	Programmable Microcapsules from Self-Immolative Polymers. Journal of the American Chemical Society, 2010, 132, 10266-10268.	6.6	192
30	Embedded Shapeâ€Memory Alloy Wires for Improved Performance of Selfâ€Healing Polymers. Advanced Functional Materials, 2008, 18, 2253-2260.	7.8	190
31	Thermally Stable Autonomic Healing in Epoxy using a Dualâ€Microcapsule System. Advanced Materials, 2014, 26, 282-287.	11.1	183
32	Selfâ€Healing of Internal Damage in Synthetic Vascular Materials. Advanced Materials, 2010, 22, 5159-5163.	11.1	176
33	Triggered Transience of Metastable Poly(phthalaldehyde) for Transient Electronics. Advanced Materials, 2014, 26, 7637-7642.	11.1	173
34	Regioisomer-Specific Mechanochromism of Naphthopyran in Polymeric Materials. Journal of the American Chemical Society, 2016, 138, 12328-12331.	6.6	163
35	Autonomic healing of low-velocity impact damage in fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 2010, 41, 360-368.	3.8	162
36	Shear activation of mechanophore-crosslinked polymers. Journal of Materials Chemistry, 2011, 21, 8381.	6.7	162

#	Article	IF	CITATIONS
37	Autonomic Shutdown of Lithiumâ€lon Batteries Using Thermoresponsive Microspheres. Advanced Energy Materials, 2012, 2, 583-590.	10.2	158
38	Microencapsulation of a Reactive Liquid-Phase Amine for Self-Healing Epoxy Composites. Macromolecules, 2010, 43, 1855-1859.	2.2	155
39	Thermally Triggered Degradation of Transient Electronic Devices. Advanced Materials, 2015, 27, 3783-3788.	11.1	153
40	Masked Cyanoacrylates Unveiled by Mechanical Force. Journal of the American Chemical Society, 2010, 132, 4558-4559.	6.6	149
41	A Selfâ€healing Conductive Ink. Advanced Materials, 2012, 24, 2578-2581.	11.1	143
42	PROCESS-INDUCED RESIDUAL STRESS ANALYSIS OF AS4/3501-6 COMPOSITE MATERIAL. Mechanics of Advanced Materials and Structures, 1998, 5, 153-186.	1.5	141
43	A new self-healing epoxy with tungsten (VI) chloride catalyst. Journal of the Royal Society Interface, 2008, 5, 95-103.	1.5	141
44	Evaluation of Ruthenium Catalysts for Ring-Opening Metathesis Polymerization-Based Self-Healing Applications. Chemistry of Materials, 2008, 20, 3288-3297.	3.2	134
45	Environmental effects on mechanochemical activation of spiropyran in linear PMMA. Journal of Materials Chemistry, 2011, 21, 8443.	6.7	129
46	Restoration of Conductivity with ∏Fâ€TCNQ Chargeâ€Transfer Salts. Advanced Functional Materials, 2010, 20, 1721-1727.	7.8	127
47	Fracture and fatigue response of a self-healing epoxy adhesive. Polymer, 2011, 52, 1628-1634.	1.8	117
48	A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission. ACS Central Science, 2016, 2, 598-603.	5.3	113
49	Direct-write assembly of biomimetic microvascular networks for efficient fluid transport. Soft Matter, 2010, 6, 739-742.	1.2	110
50	Mechanical Reactivity of Two Different Spiropyran Mechanophores in Polydimethylsiloxane. Macromolecules, 2018, 51, 9177-9183.	2.2	110
51	Self-healing kinetics and the stereoisomers of dicyclopentadiene. Journal of the Royal Society Interface, 2007, 4, 389-393.	1.5	108
52	Autonomous Indication of Mechanical Damage in Polymeric Coatings. Advanced Materials, 2016, 28, 2189-2194.	11.1	106
53	Role of Mechanophore Orientation in Mechanochemical Reactions. ACS Macro Letters, 2012, 1, 163-166.	2.3	102
54	Accelerated Self-Healing Via Ternary Interpenetrating Microvascular Networks. Advanced Functional Materials, 2011, 21, 4320-4326.	7.8	91

#	Article	IF	CITATIONS
55	Fracture behavior of a self-healing, toughened epoxy adhesive. International Journal of Adhesion and Adhesives, 2013, 44, 157-165.	1.4	91
56	The Effect of Polymer Chain Alignment and Relaxation on Forceâ€Induced Chemical Reactions in an Elastomer. Advanced Functional Materials, 2014, 24, 1529-1537.	7.8	88
57	Fracture-induced activation in mechanophore-linked, rubber toughened PMMA. Polymer, 2014, 55, 4164-4171.	1.8	84
58	Core–Shell Polymeric Microcapsules with Superior Thermal and Solvent Stability. ACS Applied Materials & Interfaces, 2015, 7, 10952-10956.	4.0	84
59	Alkyl Phosphite Inhibitors for Frontal Ring-Opening Metathesis Polymerization Greatly Increase Pot Life. ACS Macro Letters, 2017, 6, 609-612.	2.3	79
60	Introduction: self-healing polymers and composites. Journal of the Royal Society Interface, 2007, 4, 347-348.	1.5	72
61	Mechanisms and characterization of impact damage in 2D and 3D woven fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 2017, 101, 432-443.	3.8	72
62	The Continuous Cuing Process for Thermoset Polymer Composites. Part 1: Modeling and Demonstration. Journal of Composite Materials, 1995, 29, 1222-1253.	1.2	71
63	VISCOELASTIC ANALYSIS OF PROCESSING-INDUCED RESIDUAL STRESSES IN THICK COMPOSITE LAMINATES. Mechanics of Advanced Materials and Structures, 1997, 4, 361-387.	1.5	71
64	Autonomic Healing of Carbon Fiber/Epoxy Interfaces. ACS Applied Materials & Interfaces, 2014, 6, 6033-6039.	4.0	69
65	Autonomic Recovery of Fiber/Matrix Interfacial Bond Strength in a Model Composite. Advanced Functional Materials, 2010, 20, 3547-3554.	7.8	66
66	Tensile properties and damage evolution in vascular 3D woven glass/epoxy composites. Composites Part A: Applied Science and Manufacturing, 2014, 59, 9-17.	3.8	65
67	Autonomic Healing of Polymers. MRS Bulletin, 2008, 33, 766-769.	1.7	64
68	Evaluation of peroxide initiators for radical polymerizationâ€based selfâ€healing applications. Journal of Polymer Science Part A, 2010, 48, 2698-2708.	2.5	61
69	A Self-sealing Fiber-reinforced Composite. Journal of Composite Materials, 2010, 44, 2573-2585.	1.2	61
70	Time-Dependent Mechanochemical Response of SP-Cross-Linked PMMA. Macromolecules, 2013, 46, 8917-8921.	2.2	61
71	Microencapsulation of gallium–indium (Ga–In) liquid metal for self-healing applications. Journal of Microencapsulation, 2014, 31, 350-354.	1.2	61
72	Characterization of core-shell microstructure and self-healing performance of electrospun fiber coatings. Polymer, 2016, 107, 263-272.	1.8	60

#	Article	IF	CITATIONS
73	Carbon fiber composites with 2D microvascular networks for battery cooling. International Journal of Heat and Mass Transfer, 2017, 115, 513-522.	2.5	60
74	Comparison of Compression-After-Impact and Flexure-After-Impact protocols for 2D and 3D woven fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 2017, 101, 471-479.	3.8	59
75	Design of microvascular flow networks using multi-objective genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 4399-4410.	3.4	58
76	Visual Indication of Mechanical Damage Using Core–Shell Microcapsules. ACS Applied Materials & Interfaces, 2011, 3, 4547-4551.	4.0	57
77	Room-Temperature Polydimethylsiloxane-Based Self-Healing Polymers. Chemistry of Materials, 2012, 24, 4209-4214.	3.2	56
78	Chemical Treatment of Poly(lactic acid) Fibers to Enhance the Rate of Thermal Depolymerization. ACS Applied Materials & Interfaces, 2012, 4, 503-509.	4.0	55
79	Microfluidically Switched Frequency-Reconfigurable Slot Antennas. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 828-831.	2.4	55
80	Multidimensional Vascularized Polymers using Degradable Sacrificial Templates. Advanced Functional Materials, 2015, 25, 1043-1052.	7.8	55
81	Fully Recyclable Metastable Polymers and Composites. Chemistry of Materials, 2019, 31, 398-406.	3.2	53
82	Peripherally decorated binary microcapsules containing two liquids. Journal of Materials Chemistry, 2008, 18, 5390.	6.7	51
83	Autonomic restoration of electrical conductivity using polymer-stabilized carbon nanotube and graphene microcapsules. Applied Physics Letters, 2012, 101, 043106.	1.5	51
84	Self-healing Polymers and Composites. American Scientist, 2011, 99, 392.	0.1	50
85	Rheological Behavior of Fugitive Organic Inks for Direct-Write Assembly. Applied Rheology, 2007, 17, 10112-1-10112-8.	3.5	49
86	Structural health management technologies for inflatable/deployable structures: Integrating sensing and self-healing. Acta Astronautica, 2011, 68, 883-903.	1.7	49
87	Modeling mechanophore activation within a viscous rubbery network. Journal of the Mechanics and Physics of Solids, 2014, 63, 141-153.	2.3	49
88	Modeling mechanophore activation within a crosslinked glassy matrix. Journal of Applied Physics, 2013, 114, .	1.1	48
89	Repeatable self-healing of an epoxy matrix using imidazole initiated polymerization. Polymer, 2015, 67, 174-184.	1.8	48
90	Restoration of Impact Damage in Polymers via a Hybrid Microcapsule–Microvascular Selfâ€Healing System. Advanced Functional Materials, 2018, 28, 1704197.	7.8	48

#	Article	IF	CITATIONS
91	Computational analysis of actively-cooled 3D woven microvascular composites using a stabilized interface-enriched generalized finite element method. International Journal of Heat and Mass Transfer, 2013, 65, 153-164.	2.5	44
92	Computational modeling and design of actively-cooled microvascular materials. International Journal of Heat and Mass Transfer, 2012, 55, 5309-5321.	2.5	43
93	Self-sealing of mechanical damage in a fully cured structural composite. Composites Science and Technology, 2013, 79, 15-20.	3.8	41
94	Microencapsulated Carbon Black Suspensions for Restoration of Electrical Conductivity. Advanced Functional Materials, 2014, 24, 2947-2956.	7.8	41
95	Silicon Composite Electrodes with Dynamic Ionic Bonding. Advanced Energy Materials, 2017, 7, 1700045.	10.2	41
96	Cyclic Poly(phthalaldehyde): Thermoforming a Bulk Transient Material. ACS Macro Letters, 2018, 7, 47-52.	2.3	41
97	Effect of Mechanical Stress on Spiropyran-Merocyanine Reaction Kinetics in a Thermoplastic Polymer. ACS Macro Letters, 2016, 5, 1312-1316.	2.3	39
98	Adhesion Promotion via Noncovalent Interactions in Self-Healing Polymers. ACS Applied Materials & Interfaces, 2011, 3, 3072-3077.	4.0	38
99	Gradient-based design of actively-cooled microvascular composite panels. International Journal of Heat and Mass Transfer, 2016, 103, 594-606.	2.5	36
100	Interfacial Mechanophore Activation Using Laser-Induced Stress Waves. Journal of the American Chemical Society, 2018, 140, 5000-5003.	6.6	36
101	Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres. Journal of Power Sources, 2014, 269, 735-739.	4.0	35
102	Characterization of Active Cooling and Flow Distribution in Microvascular Polymers. Journal of Intelligent Material Systems and Structures, 2010, 21, 1147-1156.	1.4	34
103	Structural reinforcement of microvascular networks using electrostatic layer-by-layer assembly with halloysite nanotubes. Soft Matter, 2014, 10, 544-548.	1.2	34
104	Self-healing of fatigue damage in cross-ply glass/epoxy laminates. Composites Science and Technology, 2019, 175, 122-127.	3.8	31
105	A selfâ€healing biomaterial based on freeâ€radical polymerization. Journal of Biomedical Materials Research - Part A, 2014, 102, 3024-3032.	2.1	30
106	Autonomic healing of PMMA via microencapsulated solvent. Polymer, 2015, 69, 241-248.	1.8	30
107	Core–Shell Microcapsules Containing Flame Retardant Tris(2-chloroethyl phosphate) for Lithium-Ion Battery Applications. ACS Omega, 2018, 3, 1609-1613.	1.6	30
108	Multi-physics optimization of three-dimensional microvascular polymeric components. Journal of Computational Physics, 2013, 233, 132-147.	1.9	29

#	Article	IF	CITATIONS
109	Sunlightâ€Activated Selfâ€Healing Polymer Coatings. Advanced Engineering Materials, 2020, 22, 1901223.	1.6	29
110	Retention of mechanical performance of polymer matrix composites above the glass transition temperature by vascular cooling. Composites Part A: Applied Science and Manufacturing, 2015, 78, 412-423.	3.8	28
111	Low-Ceiling-Temperature Polymer Microcapsules with Hydrophobic Payloads via Rapid Emulsion-Solvent Evaporation. ACS Applied Materials & Interfaces, 2017, 9, 20115-20123.	4.0	28
112	Multi-objective design of microvascular panels for battery cooling applications. Applied Thermal Engineering, 2018, 135, 145-157.	3.0	28
113	Get ready for repair-and-go. Nature Nanotechnology, 2010, 5, 247-248.	15.6	26
114	Rapid Stiffening of a Microfluidic Endoskeleton via Frontal Polymerization. ACS Applied Materials & Interfaces, 2014, 6, 18469-18474.	4.0	26
115	CURE-DEPENDENT VISCOELASTIC RESIDUAL STRESS ANALYSIS OF FILAMENT-WOUND COMPOSITE CYLINDERS. Mechanics of Advanced Materials and Structures, 1998, 5, 327-354.	1.5	25
116	Strain and stress mapping by mechanochemical activation of spiropyran in poly(methyl methacrylate). Strain, 2019, 55, e12310.	1.4	25
117	Manufacture of carbon-fiber prepreg with thermoplastic/epoxy resin blends and microencapsulated solvent healing agents. Composites Part A: Applied Science and Manufacturing, 2019, 121, 365-375.	3.8	24
118	Self-healing of impact damage in fiber-reinforced composites. Composites Part B: Engineering, 2019, 173, 106808.	5.9	23
119	Repeated healing of delamination damage in vascular composites by pressurized delivery of reactive agents. Composites Science and Technology, 2017, 151, 1-9.	3.8	22
120	Self-Protecting Epoxy Coatings with Anticorrosion Microcapsules. ACS Omega, 2018, 3, 14157-14164.	1.6	22
121	Autonomic Healing of Acrylic Bone Cement. Advanced Healthcare Materials, 2015, 4, 202-207.	3.9	20
122	Rapid Degradation of Poly(lactic acid) with Organometallic Catalysts. ACS Applied Materials & Interfaces, 2019, 11, 46226-46232.	4.0	20
123	Multi-physics design of microvascular materials for active cooling applications. Journal of Computational Physics, 2011, 230, 5178-5198.	1.9	19
124	Self Healing Polymers and Composites. Springer Series in Materials Science, 2007, , 19-44.	0.4	18
125	Strategies for Volumetric Recovery of Large Scale Damage in Polymers. Advanced Functional Materials, 2016, 26, 4561-4569.	7.8	18
126	Survival of actively cooled microvascular polymer matrix composites under sustained thermomechanical loading. Composites Part A: Applied Science and Manufacturing, 2016, 82, 170-179.	3.8	18

#	Article	IF	CITATIONS
127	Active Cooling of a Microvascular Shape Memory Alloyâ€Polymer Matrix Composite Hybrid Material. Advanced Engineering Materials, 2016, 18, 1145-1153.	1.6	18
128	Direct Detection of Manganese lons in Organic Electrolyte by UV-vis Spectroscopy. Journal of the Electrochemical Society, 2018, 165, A345-A348.	1.3	18
129	Manufacturing of unidirectional glass/epoxy prepreg with microencapsulated liquid healing agents. Composites Science and Technology, 2017, 153, 190-197.	3.8	17
130	Effect of microchannels on the crashworthiness of fiber-reinforced composites. Composite Structures, 2018, 184, 428-436.	3.1	17
131	Continuous Curing and Induced Thermal Stresses of a Thick Filament Wound Composite Cylinder. Journal of Reinforced Plastics and Composites, 2001, 20, 166-180.	1.6	14
132	Design of redundant microvascular cooling networks for blockage tolerance. Applied Thermal Engineering, 2018, 131, 965-976.	3.0	14
133	The Continuous Curing Process for Thermoset Polymer Composites. Part 2: Experimental Results for a Graphite/Epoxy Laminate. Journal of Composite Materials, 1996, 30, 627-647.	1.2	13
134	Computational design and optimization of a biomimetic self-healing/cooling composite material. , 2007, 6526, 323.		13
135	Encapsulation of grape seed extract in polylactide microcapsules for sustained bioactivity and time-dependent release in dental material applications. Dental Materials, 2017, 33, 630-636.	1.6	12
136	Controlling Expansion in Lithium Manganese Oxide Composite Electrodes via Surface Modification. Journal of the Electrochemical Society, 2019, 166, A2357-A2362.	1.3	12
137	Time Release of Encapsulated Additives for Enhanced Performance of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 40244-40251.	4.0	11
138	Accelerated Thermal Depolymerization of Cyclic Polyphthalaldehyde with a Polymeric Thermoacid Generator. Macromolecular Rapid Communications, 2018, 39, e1800046.	2.0	11
139	Enhanced Mixing of Microvascular Self-Healing Reagents Using Segmented Gas–Liquid Flow. ACS Applied Materials & Interfaces, 2018, 10, 32659-32667.	4.0	9
140	Active cooling of microvascular composites for battery packaging. Smart Materials and Structures, 2017, 26, 105004.	1.8	8
141	Processing-dependent mechanical properties of solvent cast cyclic polyphthalaldehyde. Polymer, 2019, 162, 29-34.	1.8	7
142	Localization of Spiropyran Activation. Langmuir, 2020, 36, 5847-5854.	1.6	7
143	Computational Design of Actively-Cooled Microvascular Composite Skin Panels for Hypersonic Aircraft. , 2013, , .		5

144 Microvascular composite skin panels for hypersonic aircraft. , 2014, , .

5

#	Article	IF	CITATIONS
145	Damage Detection: Autonomous Indication of Mechanical Damage in Polymeric Coatings (Adv. Mater.) Tj ETQq1	1 0,78431 11.1	4 ₅ rgBT /Ove
146	A Microvascular System for the Autonomous Regeneration of Large Scale Damage in Polymeric Coatings. Advanced Engineering Materials, 2017, 19, 1700319.	1.6	5
147	Regenerative Polymeric Coatings Enabled by Pressure Responsive Surface Valves. Advanced Engineering Materials, 2017, 19, 1700308.	1.6	3
148	Biomimetics: Restoration of Impact Damage in Polymers via a Hybrid Microcapsule–Microvascular Selfâ€Healing System (Adv. Funct. Mater. 2/2018). Advanced Functional Materials, 2018, 28, 1870012.	7.8	3
149	Special issue on â€~Self-healing materials'. Journal of Composite Materials, 2010, 44, 2525-2525.	1.2	2
150	Computational Design of Actively-Cooled Microvascular Composites for High Temperature Applications. , 2012, , .		2
151	Selfâ€Healing Circuits: Autonomic Restoration of Electrical Conductivity (Adv. Mater. 3/2012). Advanced Materials, 2012, 24, 397-397.	11.1	2
152	Selfâ€Healing Materials: Autonomic Healing of Acrylic Bone Cement (Adv. Healthcare Mater. 2/2015). Advanced Healthcare Materials, 2015, 4, 170-170.	3.9	2
153	Active repair of self-healing polymers with shape memory alloy wires. , 2007, , .		1
154	Hybrid Materials: Three-Dimensional Microvascular Fiber-Reinforced Composites (Adv. Mater. 32/2011). Advanced Materials, 2011, 23, 3653-3653.	11.1	1
155	A polarization reconfigurable microstrip patch antenna using liquid metal microfluidics. Smart Materials and Structures, 2020, 29, 045032.	1.8	1
156	Carbon Black: Microencapsulated Carbon Black Suspensions for Restoration of Electrical Conductivity (Adv. Funct. Mater. 20/2014). Advanced Functional Materials, 2014, 24, 2922-2922.	7.8	0
157	A novel fluidic switch for high power applications. , 2014, , .		Ο
158	Transient Electronics: Thermally Triggered Degradation of Transient Electronic Devices (Adv. Mater.) Tj ETQq0 0 0	rgBT /Ove 91.1	rlgck 10 Tf S
159	Biopolymers: Multidimensional Vascularized Polymers using Degradable Sacrificial Templates (Adv.) Tj ETQq1 1 0.	784314 rg 7.8	BT /Overloc
160	Simultaneous Observation of Phase-Stepped Photoelastic Images Using Diffraction Gratings. Conference Proceedings of the Society for Experimental Mechanics, 2013, , 327-332.	0.3	0
161	Multiscale Modeling of Mechanoresponsive Polymers. Conference Proceedings of the Society for Experimental Mechanics, 2013, , 37-39.	0.3	Ο
162	Materials challenges for repeatable RF wireless device reconfiguration with microfluidic channels. , 2018, , .		0