
Do Nascimento, Gm, Nascimento, Gm, N

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2792879/publications.pdf

Version: 2024-02-01

Do Nascimento, Gm, Nascimento, Cm

#	Article	IF	CITATIONS
1	Aniline Polymerization into Montmorillonite Clay:Â A Spectroscopic Investigation of the Intercalated Conducting Polymer. Macromolecules, 2004, 37, 9373-9385.	4.8	161
2	Studies on the resonance Raman spectra of polyaniline obtained with nearâ€IR excitation. Journal of Raman Spectroscopy, 2008, 39, 772-778.	2.5	128
3	Spectroscopic Characterization of a New Type of Conducting Polymerâ^'Clay Nanocomposite. Macromolecules, 2002, 35, 7535-7537.	4.8	103
4	Synthesis and spectroscopic characterization of polymer and oligomers of ortho-phenylenediamine. European Polymer Journal, 2010, 46, 484-493.	5.4	79
5	Spectroscopic characterization of polyaniline formed in the presence of montmorillonite clay. Polymer, 2006, 47, 6131-6139.	3.8	78
6	Structure of chemically prepared poly-(para-phenylenediamine) investigated by spectroscopic techniques. Polymer, 2009, 50, 6043-6048.	3.8	72
7	Substrate development for surface-enhanced Raman study of photocatalytic degradation processes: Congo red over silver modified titanium dioxide films. Applied Catalysis B: Environmental, 2006, 69, 34-42.	20.2	61
8	Synthesis and characterization of single-wall-carbon-nanotube-doped emeraldine salt and base polyaniline nanocomposites. Journal of Polymer Science Part A, 2005, 43, 815-822.	2.3	57
9	Electronic Structure and Doping Behavior of PANI-NSA Nanofibers Investigated by Resonance Raman Spectroscopy. Macromolecular Rapid Communications, 2006, 27, 255-259.	3.9	57
10	Spectroscopic characterization of the structural changes of polyaniline nanofibers after heating. Polymer Degradation and Stability, 2008, 93, 291-297.	5.8	57
11	Comparison of Secondary Doping and Thermal Treatment in Poly(diphenylamine) and Polyaniline Monitored by Resonance Raman Spectroscopy. Macromolecules, 2002, 35, 121-125.	4.8	50
12	The role of cross-linking structures to the formation of one-dimensional nano-organized polyaniline and their Raman fingerprint. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 71, 869-875.	3.9	47
13	Spectroscopic Characterization of Doped Poly(benzidine) and Its Nanocomposite with Cationic Clay. Journal of Physical Chemistry B, 2004, 108, 5564-5571.	2.6	45
14	Amoxicillin photodegradation under visible light catalyzed by metal-free carbon nitride: An investigation of the influence of the structural defects. Journal of Hazardous Materials, 2021, 401, 123713.	12.4	45
15	Structure of polyaniline formed in different inorganic porous materials: A spectroscopic study. European Polymer Journal, 2008, 44, 3501-3511.	5.4	39
16	Structural and Vibrational Characterization of Polyaniline Nanofibers Prepared from Interfacial Polymerization. Journal of Physical Chemistry B, 2008, 112, 11551-11557.	2.6	38
17	Single-wall carbon nanotubes modified with organic dyes: Synthesis, characterization and potential cytotoxic effects. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 211, 99-107.	3.9	35
18	Raman dispersion in polyaniline base forms. Synthetic Metals, 2007, 157, 247-251.	3.9	34

Do Nascimento, Gm,

#	Article	IF	CITATIONS
19	Spectroscopic investigation of conjugated polymers derived from nitroanilines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 69, 319-326.	3.9	33
20	Chargeâ€ŧransfer behavior of polyaniline single wall carbon nanotubes nanocomposites monitored by resonance Raman spectroscopy. Journal of Raman Spectroscopy, 2010, 41, 1587-1593.	2.5	31
21	Surface-enhanced Raman study of electrochemical and photocatalytic degradation of the azo dye Janus Green B. Applied Catalysis B: Environmental, 2008, 77, 339-345.	20.2	30
22	Double-Wall Carbon Nanotubes Doped with Different Br2 Doping Levels: A Resonance Raman Study. Nano Letters, 2008, 8, 4168-4172.	9.1	28
23	Studies of ionic liquid solutions by soft X-ray absorption spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2007, 155, 148-154.	1.7	27
24	Dissolution and Doping of Polyaniline Emeraldine Base in Imidazolium Ionic Liquids Investigated by Spectroscopic Techniques. Macromolecular Rapid Communications, 2007, 28, 666-669.	3.9	24
25	Spectroscopic Characterization of the Inclusion Compound Formed by Polyaniline and β-Cyclodextrin. Molecular Crystals and Liquid Crystals, 2002, 374, 53-58.	0.9	23
26	Comparison of the Resonance Raman Behavior of Double-Walled Carbon Nanotubes Doped with Bromine or Iodine Vapors. Journal of Physical Chemistry C, 2009, 113, 3934-3938.	3.1	23
27	Interionic Interactions in Imidazolic Ionic Liquids Probed by Soft X-ray Absorption Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 1491-1498.	2.6	23
28	Benzidine oxidation on cationic clay surfaces in aqueous suspension monitored by in situ resonance Raman spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 289, 39-46.	4.7	19
29	Behavior of the high frequency Raman modes of double-wall carbon nanotubes after doping with bromine or iodine vapors. Carbon, 2011, 49, 3585-3596.	10.3	19
30	Oxidation of anilinium ions intercalated in montmorillonite clay by electrochemical route. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 318, 245-253.	4.7	18
31	Elucidando os estados de oxidação do nitrogênio através da espectroscopia de absorção de raios-X na borda K do nitrogênio. Quimica Nova, 2006, 29, 823-828.	0.3	17
32	An Fe ^{III} dinuclear metallacycle complex as a size-selective adsorbent for nitrogenous compounds and a potentially effective ammonia storage material. Journal of Materials Chemistry A, 2019, 7, 15225-15232.	10.3	15
33	Structural characterization of poly-para-phenylenediamine–montmorillonite clay nanocomposites. Synthetic Metals, 2010, 160, 2397-2403.	3.9	13
34	Deprotonation, Raman dispersion and thermal behavior of polyaniline–montmorillonite nanocomposites. Synthetic Metals, 2016, 217, 109-116.	3.9	13
35	Bistable copper(II) metallosurfactant as molecular machine for the preparation of hybrid silica-based porous materials. Materials and Design, 2018, 160, 876-885.	7.0	13
36	Raman dispersion in polyaniline nanofibers. Vibrational Spectroscopy, 2017, 90, 89-95.	2.2	11

Do Nascimento, Gm,

#	Article	IF	CITATIONS
37	X-ray absorption spectroscopy of nanostructured polyanilines. Chemical Papers, 2013, 67, .	2.2	9
38	Characterization of compounds derived from copper-oxamate and imidazolium by X-ray absorption and vibrational spectroscopies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 142, 303-310.	3.9	9
39	Selective Wrapping of Few-Walled Carbon Nanotubes by a Serpent-Like Heterobimetallic Coordination Polymer. Journal of Physical Chemistry C, 2016, 120, 1245-1251.	3.1	9
40	A hybrid catalyst for decontamination of organic pollutants based on a bifunctional dicopper(II) complex anchored over niobium oxyhydroxide. Applied Catalysis B: Environmental, 2017, 209, 339-345.	20.2	8
41	Spectroscopic study of the polymerization of intercalated anilinium ions in different montmorillonite clays. Journal of Molecular Structure, 2011, 1002, 63-69.	3.6	7
42	Singleâ€wall carbon nanotube interactions with copperâ€oxamato building block of moleculeâ€based magnets probed by resonance Raman spectroscopy. Journal of Raman Spectroscopy, 2012, 43, 1951-1956.	2.5	7
43	Structure of Clays and Polymer–Clay Composites Studied by X-ray Absorption Spectroscopies. , 0, , .		6
44	Title is missing!. , 0, , .		6
45	Spectroscopy of Polyaniline Nanofibers. , 2010, , .		5
46	Multifunctional Nb–Cu nanostructured materials as potential adsorbents and oxidation catalysts for real wastewater decontamination. New Journal of Chemistry, 2019, 43, 9134-9144.	2.8	5
47	Human Hair as Adsorbent of Palladium(II) in Solution: A Precursor of Well-Dispersed Size-Controlled Pd Nanoparticles. Journal of the Brazilian Chemical Society, 0, , .	0.6	3
48	Resonance Raman characterization of poly(benzidine) in different oxidation states. Journal of Molecular Structure, 2021, 1242, 130751.	3.6	3
49	Introductory Chapter: The Multiple Applications of Raman Spectroscopy. , 2018, , .		2
50	Single-wall carbon nanotube modified with copper-oxamate flat complex probed by synchrotron x-ray photoelectron and x-ray absorption spectroscopies. Journal of Molecular Structure, 2019, 1176, 711-717.	3.6	2
51	Raman Spectroscopy and Imaging of Carbon Allotropes. , 0, , .		1
52	Resonance Raman Study of Carbon Nanotubes Interactions with Molecule-Based Magnets Derived from Cu(opba)[sup 2â^'] Anions. , 2010, , .		0
53	Dimerization of N,N′-diethyl-aniline into montmorillonite clay: A spectroscopic and DFT investigation. Vibrational Spectroscopy, 2019, 102, 91-96.	2.2	0
54	Prologue: Nanofibers. , 2020, , .		0

4

0

55 Two Spectroscopies as Main Source for Investigation of Polymer-Clay Materials. , 0, , . 0	#	Article	IF	CITATIONS
	55	Two Spectroscopies as Main Source for Investigation of Polymer-Clay Materials. , 0, , .		0

56 Introductory Chapter: Polymers and Clays - A Fruitful Combination. , 0, , .