Åukasz GrzeÅ-kowiak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2792866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Porcine and Chicken Intestinal Epithelial Cell Models for Screening Phytogenic Feed Additives—Chances and Limitations in Use as Alternatives to Feeding Trials. Microorganisms, 2022, 10, 629.	1.6	5
2	Fiber Composition in Sows' Diets Modifies Clostridioides difficile Colonization in Their Offspring. Current Microbiology, 2022, 79, 154.	1.0	6
3	A High-Energy Diet and Spirulina Supplementation during Pre-Gestation, Gestation, and Lactation do Not Affect the Reproductive and Lactational Performance of Primiparous Sows. Animals, 2022, 12, 1171.	1.0	4
4	Editorial for the Special Issue: Clostridium difficile. Microorganisms, 2021, 9, 368.	1.6	0
5	Oxidative Stress and Tissue Repair: Mechanism, Biomarkers, and Therapeutics. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-3.	1.9	11
6	A Preliminary Survey of the Distribution of Segmented Filamentous Bacteria in the Porcine Gastrointestinal Tract. Current Microbiology, 2021, 78, 3757-3761.	1.0	0
7	Storage procedures and time influence the detectability of <i>Clostridium difficile</i> toxin A but not toxin B in porcine fecal specimens. Journal of Veterinary Diagnostic Investigation, 2020, 32, 222-225.	0.5	2
8	Distinct patterns of microbial metabolic fingerprints in sows and their offspring: a pilot study. Archives of Microbiology, 2020, 202, 511-517.	1.0	6
9	Porcine Colostrum Protects the IPEC-J2 Cells and Piglet Colon Epithelium against Clostridioides (syn.) Tj ETQq1	1 0.78431 1.8	.4 rggBT /Overl
10	Inclusion of IgY in a dog's diet has moderate impact on the intestinal microbial fermentation. Journal of Applied Microbiology, 2019, 127, 996-1003.	1.4	3
11	Developing Gut Microbiota Exerts Colonisation Resistance to Clostridium (syn. Clostridioides) difficile in Piglets. Microorganisms, 2019, 7, 218.	1.6	22
12	Impact of early-life events on the susceptibility to Clostridium difficile colonisation and infection in the offspring of the pig. Gut Microbes, 2019, 10, 251-259.	4.3	14
13	Formula Feeding Predisposes Neonatal Piglets to Clostridium difficile Gut Infection. Journal of Infectious Diseases, 2018, 217, 1442-1452.	1.9	18
14	Porcine and bovine Clostridium difficile ribotype 078 isolates demonstrate similar growth and toxigenic properties. International Microbiology, 2018, 21, 215-221.	1.1	3
15	Milk <i>kefir</i> : nutritional, microbiological and health benefits. Nutrition Research Reviews, 2017, 30, 82-96.	2.1	270
16	Lipidâ€based Nutrient Supplements Do Not Affect Gut <i>Bifidobacterium</i> Microbiota in Malawian Infants. Journal of Pediatric Gastroenterology and Nutrition, 2017, 64, 610-615.	0.9	12
17	Kefir reduces insulin resistance and inflammatory cytokine expression in an animal model of metabolic syndrome. Food and Function, 2016, 7, 3390-3401.	2.1	40
18	Determination of the extent of Clostridium difficile colonisation and toxin accumulation in sows and neonatal piglets. Anaerobe, 2016, 40, 5-9.	1.0	17

Åukasz GrzeÅ›kowiak

#	Article	IF	CITATIONS
19	Physical Pre-Treatment Improves Efficient DNA Extraction and qPCR Sensitivity from Clostridium Difficile Spores in Faecal Swine Specimens. Current Microbiology, 2016, 73, 727-731.	1.0	8
20	Microbiota and probiotics in canine and feline welfare. Anaerobe, 2015, 34, 14-23.	1.0	105
21	Gut Bifidobacterium microbiota in one-month-old Brazilian newborns. Anaerobe, 2015, 35, 54-58.	1.0	25
22	Pathogen exclusion properties of canine probiotics are influenced by the growth media and physical treatments simulating industrial processes. Journal of Applied Microbiology, 2014, 116, 1308-1314.	1.4	27
23	Intestinal Microbiota and Probiotics in Celiac Disease. Clinical Microbiology Reviews, 2014, 27, 482-489.	5.7	104
24	Evaluation of the subchronic toxicity of kefir by oral administration in Wistar rats. Nutricion Hospitalaria, 2014, 29, 1352-9.	0.2	11
25	Faecal levels of Bifidobacterium and Clostridium coccoides but not plasma lipopolysaccharide are inversely related to insulin and HOMA index in women. Clinical Nutrition, 2013, 32, 1017-1022.	2.3	68
26	The effect of growth media and physical treatments on the adhesion properties of canine probiotics. Journal of Applied Microbiology, 2013, 115, 539-545.	1.4	12
27	The Role of Microbiota and Probiotics on the Gastrointestinal Health. , 2013, , 201-213.		1
28	Higher level of faecal SCFA in women correlates with metabolic syndrome risk factors. British Journal of Nutrition, 2013, 109, 914-919.	1.2	102
29	Distinct Gut Microbiota in Southeastern African and Northern European Infants. Journal of Pediatric Gastroenterology and Nutrition, 2012, 54, 812-816.	0.9	143
30	Evaluation of aggregation abilities between commensal fish bacteria and pathogens. Aquaculture, 2012, 356-357, 412-414.	1.7	21
31	The impact of perinatal probiotic intervention on gut microbiota: Double-blind placebo-controlled trials in Finland and Germany. Anaerobe, 2012, 18, 7-13.	1.0	78
32	Manufacturing process influences properties of probiotic bacteria. British Journal of Nutrition, 2011, 105, 887-894.	1.2	101
33	Influence of mother's intestinal microbiota on gut colonization in the infant. Gut Microbes, 2011, 2, 227-233.	4.3	91
34	Adhesion abilities of commensal fish bacteria by use of mucus model system: Quantitative analysis. Aquaculture, 2011, 318, 33-36.	1.7	19
35	In Vitro Evaluation of Lactobacillus gasseri Strains of Infant Origin on Adhesion and Aggregation of Specific Pathogens. Journal of Food Protection, 2011, 74, 1482-1487.	0.8	59
36	Probiotic Strains and Their Combination Inhibit In Vitro Adhesion of Pathogens to Pig Intestinal Mucosa. Current Microbiology, 2007, 55, 260-265.	1.0	150