H-Th Janka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2792825/publications.pdf

Version: 2024-02-01

192

all docs

189 22,514 88
papers citations h-index

192

docs citations

h-index g-index

192 6582
times ranked citing authors

8396

147

#	Article	IF	CITATIONS
1	Explosion Mechanisms of Core-Collapse Supernovae. Annual Review of Nuclear and Particle Science, 2012, 62, 407-451.	10.2	849
2	CORE-COLLAPSE SUPERNOVAE FROM 9 TO 120 SOLAR MASSES BASED ON NEUTRINO-POWERED EXPLOSIONS. Astrophysical Journal, 2016, 821, 38.	4.5	771
3	Theory of core-collapse supernovae. Physics Reports, 2007, 442, 38-74.	25.6	665
4	Neutron-star Radius Constraints from GW170817 and Future Detections. Astrophysical Journal Letters, 2017, 850, L34.	8.3	469
5	Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers. Monthly Notices of the Royal Astronomical Society, 2015, 448, 541-567.	4.4	466
6	SYSTEMATICS OF DYNAMICAL MASS EJECTION, NUCLEOSYNTHESIS, AND RADIOACTIVELY POWERED ELECTROMAGNETIC SIGNALS FROM NEUTRON-STAR MERGERS. Astrophysical Journal, 2013, 773, 78.	4.5	456
7	Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae. Astronomy and Astrophysics, 2006, 450, 345-350.	5.1	444
8	Formation of Double Neutron Star Systems. Astrophysical Journal, 2017, 846, 170.	4.5	435
9	<i>r</i> -PROCESS NUCLEOSYNTHESIS IN DYNAMICALLY EJECTED MATTER OF NEUTRON STAR MERGERS. Astrophysical Journal Letters, 2011, 738, L32.	8.3	390
10	PROGENITOR-EXPLOSION CONNECTION AND REMNANT BIRTH MASSES FOR NEUTRINO-DRIVEN SUPERNOVAE OF IRON-CORE PROGENITORS. Astrophysical Journal, 2012, 757, 69.	4.5	366
11	DELAYED NEUTRINO-DRIVEN SUPERNOVA EXPLOSIONS AIDED BY THE STANDING ACCRETION-SHOCK INSTABILITY. Astrophysical Journal, 2009, 694, 664-696.	4.5	348
12	Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. Astronomy and Astrophysics, 2006, 447, 1049-1092.	5.1	343
13	Neutrino Signal of Electron-Capture Supernovae from Core Collapse to Cooling. Physical Review Letters, 2010, 104, 251101.	7.8	326
14	Physics of Core-Collapse Supernovae in Three Dimensions: A Sneak Preview. Annual Review of Nuclear and Particle Science, 2016, 66, 341-375.	10.2	323
15	Radiation hydrodynamics with neutrinos. Astronomy and Astrophysics, 2002, 396, 361-392.	5.1	315
16	A TWO-PARAMETER CRITERION FOR CLASSIFYING THE EXPLODABILITY OF MASSIVE STARS BY THE NEUTRINO-DRIVEN MECHANISM. Astrophysical Journal, 2016, 818, 124.	4.5	303
17	Multidimensional supernova simulations with approximative neutrino transport. Astronomy and Astrophysics, 2006, 457, 963-986.	5.1	284
18	Measuring Neutron-Star Properties via Gravitational Waves from Neutron-Star Mergers. Physical Review Letters, 2012, 108, 011101.	7.8	264

#	Article	IF	Citations
19	Non-spherical core collapse supernovae. Astronomy and Astrophysics, 2003, 408, 621-649.	5.1	260
20	Electron Capture Rates on Nuclei and Implications for Stellar Core Collapse. Physical Review Letters, 2003, 90, 241102.	7.8	240
21	Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. Astronomy and Astrophysics, 2006, 457, 281-308.	5.1	240
22	Spherically Symmetric Simulation with Boltzmann Neutrino Transport of Core Collapse and Postbounce Evolution of a 15 [ITAL]M[/ITAL][TINF]⊙[/TINF] Star. Astrophysical Journal, 2000, 539, L33-L36.	4.5	235
23	Conditions for shock revival by neutrino heating in core-collapse supernovae. Astronomy and Astrophysics, 2001, 368, 527-560.	5.1	221
24	ELECTRON-CAPTURE SUPERNOVAE AS THE ORIGIN OF ELEMENTS BEYOND IRON. Astrophysical Journal Letters, 2011, 726, L15.	8.3	220
25	Relativistic neutron star merger simulations with non-zero temperature equations of state. Astronomy and Astrophysics, 2007, 467, 395-409.	5.1	208
26	Relativistic outflows from remnants of compact object mergers and their viability for short gamma-ray bursts. Astronomy and Astrophysics, 2005, 436, 273-311.	5.1	206
27	Prompt Merger Collapse and the Maximum Mass of Neutron Stars. Physical Review Letters, 2013, 111, 131101.	7.8	203
28	Black Hole–Neutron Star Mergers as Central Engines of Gamma-Ray Bursts. Astrophysical Journal, 1999, 527, L39-L42.	4.5	202
29	Three-dimensional neutrino-driven supernovae: Neutron star kicks, spins, and asymmetric ejection of nucleosynthesis products. Astronomy and Astrophysics, 2013, 552, A126.	5.1	201
30	Pulsar Recoil by Large-Scale Anisotropies in Supernova Explosions. Physical Review Letters, 2004, 92, 011103.	7.8	200
31	Exploring the relativistic regime with Newtonian hydrodynamics: an improved effective gravitational potential for supernova simulations. Astronomy and Astrophysics, 2006, 445, 273-289.	5.1	198
32	Equation-of-state dependence of the gravitational-wave signal from the ring-down phase of neutron-star mergers. Physical Review D, 2012, 86, .	4.7	197
33	SASI ACTIVITY IN THREE-DIMENSIONAL NEUTRINO-HYDRODYNAMICS SIMULATIONS OF SUPERNOVA CORES. Astrophysical Journal, 2013, 770, 66.	4.5	194
34	A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE OF CORE-COLLAPSE SUPERNOVAE. III. GRAVITATIONAL WAVE SIGNALS FROM SUPERNOVA EXPLOSION MODELS. Astrophysical Journal, 2013, 766, 43.	4.5	190
35	Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. Astronomy and Astrophysics, 2007, 467, 1227-1248.	5.1	189
36	NEUTRINO-DRIVEN SUPERNOVA OF A LOW-MASS IRON-CORE PROGENITOR BOOSTED BY THREE-DIMENSIONAL TURBULENT CONVECTION. Astrophysical Journal Letters, 2015, 801, L24.	8.3	188

#	Article	IF	CITATIONS
37	Three-dimensional simulations of core-collapse supernovae: from shock revival to shock breakout. Astronomy and Astrophysics, 2015, 577, A48.	5.1	186
38	THREE-DIMENSIONAL SIMULATIONS OF MIXING INSTABILITIES IN SUPERNOVA EXPLOSIONS. Astrophysical Journal, 2010, 714, 1371-1385.	4.5	184
39	Supernova simulations from a 3D progenitor model $\hat{a} \in \mathbb{C}$ Impact of perturbations and evolution of explosion properties. Monthly Notices of the Royal Astronomical Society, 2017, 472, 491-513.	4.4	184
40	Testing approximations of thermal effects in neutron star merger simulations. Physical Review D, 2010, 82, .	4.7	182
41	A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE. II. RELATIVISTIC EXPLOSION MODELS OF CORE-COLLAPSE SUPERNOVAE. Astrophysical Journal, 2012, 756, 84.	4.5	182
42	The next-generation liquid-scintillator neutrino observatory LENA. Astroparticle Physics, 2012, 35, 685-732.	4.3	181
43	NEUTRINO-DRIVEN EXPLOSION OF A 20 SOLAR-MASS STAR IN THREE DIMENSIONS ENABLED BY STRANGE-QUARK CONTRIBUTIONS TO NEUTRINO–NUCLEON SCATTERING. Astrophysical Journal Letters, 2015, 808, L42.	8.3	180
44	Non-spherical core collapse supernovae. Astronomy and Astrophysics, 2006, 453, 661-678.	5.1	176
45	IS STRONG SASI ACTIVITY THE KEY TO SUCCESSFUL NEUTRINO-DRIVEN SUPERNOVA EXPLOSIONS?. Astrophysical Journal, 2012, 755, 138.	4.5	174
46	A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMIC CODE FOR CORE-COLLAPSE SUPERNOVAE. I. METHOD AND CODE TESTS IN SPHERICAL SYMMETRY. Astrophysical Journal, Supplement Series, 2010, 189, 104-133.	7.7	173
47	Multidimensional supernova simulations with approximative neutrino transport. Astronomy and Astrophysics, 2008, 477, 931-952.	5.1	166
48	Non-radial instabilities and progenitor asphericities in core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2141-2174.	4.4	165
49	<i>r</i> -Process Nucleosynthesis in Hot Accretion Disk Flows from Black Hole-Neutron Star Mergers. Astrophysical Journal, 2008, 679, L117-L120.	4.5	164
50	Gravitational wave burst signal from core collapse of rotating stars. Physical Review D, 2008, 78, .	4.7	162
51	Ledoux Convection in Protoneutron Stars—A Clue to Supernova Nucleosynthesis?. Astrophysical Journal, 1996, 473, L111-L114.	4.5	161
52	SELF-SUSTAINED ASYMMETRY OF LEPTON-NUMBER EMISSION: A NEW PHENOMENON DURING THE SUPERNOVA SHOCK-ACCRETION PHASE IN THREE DIMENSIONS. Astrophysical Journal, 2014, 792, 96.	4. 5	152
53	Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae. Astronomy and Astrophysics, 2009, 496, 475-494.	5.1	151
54	NUCLEOSYNTHESIS IN ELECTRON CAPTURE SUPERNOVAE OF ASYMPTOTIC GIANT BRANCH STARS. Astrophysical Journal, 2009, 695, 208-220.	4.5	143

#	Article	IF	CITATIONS
55	New Fission Fragment Distributions and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>r</mml:mi></mml:math> -Process Origin of the Rare-Earth Elements. Physical Review Letters, 2013, 111, 242502.	7.8	141
56	Nucleosynthesis and Clump Formation in a Core-Collapse Supernova. Astrophysical Journal, 2000, 531, L123-L126.	4.5	136
57	NEW TWO-DIMENSIONAL MODELS OF SUPERNOVA EXPLOSIONS BY THE NEUTRINO-HEATING MECHANISM: EVIDENCE FOR DIFFERENT INSTABILITY REGIMES IN COLLAPSING STELLAR CORES. Astrophysical Journal, 2012, 761, 72.	4. 5	136
58	3D Collapse of Rotating Stellar Iron Cores in General Relativity Including Deleptonization and a Nuclear Equation of State. Physical Review Letters, 2007, 98, 261101.	7.8	128
59	Nucleosynthesis in the Innermost Ejecta of Neutrino-driven Supernova Explosions in Two Dimensions. Astrophysical Journal, 2018, 852, 40.	4.5	128
60	Neutron Star Kicks by the Gravitational Tug-boat Mechanism in Asymmetric Supernova Explosions: Progenitor and Explosion Dependence. Astrophysical Journal, 2017, 837, 84.	4.5	125
61	Nuclear robustness of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>r</mml:mi></mml:math> process in neutron-star mergers. Physical Review C, 2015, 92, .	2.9	124
62	Muon Creation in Supernova Matter Facilitates Neutrino-Driven Explosions. Physical Review Letters, 2017, 119, 242702.	7.8	121
63	The Explosion of Helium Stars Evolved with Mass Loss. Astrophysical Journal, 2020, 890, 51.	4.5	121
64	NEUTRON-STAR MERGER EJECTA AS OBSTACLES TO NEUTRINO-POWERED JETS OF GAMMA-RAY BURSTS. Astrophysical Journal Letters, 2016, 816, L30.	8.3	119
65	Impact of weak interactions of free nucleons on the r-process in dynamical ejecta from neutron star mergers. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3894-3904.	4.4	118
66	Natal kicks of stellar mass black holes by asymmetric mass ejection in fallback supernovae. Monthly Notices of the Royal Astronomical Society, 2013, 434, 1355-1361.	4.4	117
67	High-resolution supernova neutrino spectra represented by a simple fit. Physical Review D, 2012, 86, .	4.7	116
68	Production and Distribution of ⁴⁴ Ti and ⁵⁶ Ni in a Three-dimensional Supernova Model Resembling Cassiopeia A. Astrophysical Journal, 2017, 842, 13.	4.5	115
69	Neutrino emission characteristics and detection opportunities based on three-dimensional supernova simulations. Physical Review D, 2014, 90, .	4.7	114
70	Core-collapse supernovae: Reflections and directions. Progress of Theoretical and Experimental Physics, 2012, 2012, .	6.6	112
71	Gravitational wave signals from 3D neutrino hydrodynamics simulations of core-collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2032-2051.	4.4	112
72	Coalescing neutron stars -A step towards physical models. Astronomy and Astrophysics, 2001, 380, 544-577.	5.1	112

#	Article	IF	Citations
73	Revealing the high-density equation of state through binary neutron star mergers. Physical Review D, 2014, 90, .	4.7	110
74	UNCERTAINTIES IN THE $\hat{1}\frac{1}{2}$ <i>>p</i> -PROCESS: SUPERNOVA DYNAMICS VERSUS NUCLEAR PHYSICS. Astrophysical Journal, 2011, 729, 46.	4.5	108
75	Global comparison of core-collapse supernova simulations in spherical symmetry. Journal of Physics G: Nuclear and Particle Physics, 2018, 45, 104001.	3.6	108
76	A new multidimensional, energy-dependent two-moment transport code for neutrino-hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3387-3414.	4.4	107
77	THE LAST MINUTES OF OXYGEN SHELL BURNING IN A MASSIVE STAR. Astrophysical Journal, 2016, 833, 124.	4.5	107
78	Rotation-supported Neutrino-driven Supernova Explosions in Three Dimensions and the Critical Luminosity Condition. Astrophysical Journal, 2018, 852, 28.	4.5	107
79	The First Second of a Type II Supernova: Convection, Accretion, and Shock Propagation. Astrophysical Journal, 1995, 448, .	4.5	101
80	Exploring properties of high-density matter through remnants of neutron-star mergers. European Physical Journal A, 2016, 52, 1.	2.5	101
81	HYDRODYNAMICAL NEUTRON STAR KICKS IN THREE DIMENSIONS. Astrophysical Journal Letters, 2010, 725, L106-L110.	8.3	100
82	Exploiting the neutronization burst of a galactic supernova. Physical Review D, 2005, 71, .	4.7	99
83	PROGENITOR-DEPENDENT EXPLOSION DYNAMICS IN SELF-CONSISTENT, AXISYMMETRIC SIMULATIONS OF NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVAE. Astrophysical Journal, 2016, 825, 6.	4.5	99
84	Self-consistent 3D Supernova Models From â^7 Minutes to +7 s: A 1-bethe Explosion of a â^1⁄419 M _⊙ Progenitor. Astrophysical Journal, 2021, 915, 28.	4.5	97
85	Generic Gravitational-Wave Signals from the Collapse of Rotating Stellar Cores. Physical Review Letters, 2007, 98, 251101.	7.8	94
86	Parametrized 3D models of neutrino-driven supernova explosions. Astronomy and Astrophysics, 2012, 537, A63.	5.1	94
87	Dynamics of shock propagation and nucleosynthesis conditions in O-Ne-Mg core supernovae. Astronomy and Astrophysics, 2008, 485, 199-208.	5.1	93
88	Neutrino pair annihilation near accreting, stellar-mass black holes. Astronomy and Astrophysics, 2007, 463, 51-67.	5.1	92
89	Influence of light nuclei on neutrino-driven supernova outflows. Physical Review C, 2008, 78, .	2.9	88
90	Neutrino Signature of Supernova Hydrodynamical Instabilities in Three Dimensions. Physical Review Letters, 2013, 111, 121104.	7.8	88

#	Article	IF	CITATIONS
91	Effects of Inelastic Neutrino-Nucleus Scattering on Supernova Dynamics and Radiated Neutrino Spectra. Physical Review Letters, 2008, 100, 011101.	7.8	84
92	Fast neutrino flavor instability in the neutron-star convection layer of three-dimensional supernova models. Physical Review D, 2020, 101, .	4.7	79
93	Non-stationary hyperaccretion of stellar-mass black holes in three dimensions: torus evolution and neutrino emission. Monthly Notices of the Royal Astronomical Society, 2004, 352, 753-758.	4.4	78
94	Three-dimensional models of core-collapse supernovae from low-mass progenitors with implications for Crab. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2039-2084.	4.4	78
95	The <i>r</i> -PROCESS IN THE NEUTRINO-DRIVEN WIND FROM A BLACK-HOLE TORUS. Astrophysical Journal, 2012, 746, 180.	4.5	77
96	Flavor-dependent Neutrino Angular Distribution in Core-collapse Supernovae. Astrophysical Journal, 2017, 839, 132.	4.5	77
97	Imprints of neutrino-pair flavor conversions on nucleosynthesis in ejecta from neutron-star merger remnants. Physical Review D, 2017, 96, .	4.7	74
98	Three-dimensional Core-collapse Supernova Simulations with Multidimensional Neutrino Transport Compared to the Ray-by-ray-plus Approximation. Astrophysical Journal, 2019, 873, 45.	4.5	73
99	Suppression of Self-Induced Flavor Conversion in the Supernova Accretion Phase. Physical Review Letters, 2012, 108, 061101.	7.8	72
100	High Angular Resolution ALMA Images of Dust and Molecules in the SN 1987A Ejecta. Astrophysical Journal, 2019, 886, 51.	4.5	71
101	Prospects for high frequency burst searches following binary neutron star coalescence with advanced gravitational wave detectors. Physical Review D, 2014, 90, .	4.7	70
102	Gravitational waves from 3D core-collapse supernova models: The impact of moderate progenitor rotation. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2238-2253.	4.4	69
103	Supernova neutrino halo and the suppression of self-induced flavor conversion. Physical Review D, 2012, 85, .	4.7	68
104	The r-process nucleosynthesis: a continued challenge for nuclear physics and astrophysics. Nuclear Physics A, 2005, 758, 587-594.	1.5	66
105	Three-dimensional simulations of non-stationary accretion by remnant black holes of compact object mergers. Astronomy and Astrophysics, 2006, 458, 553-567.	5.1	66
106	A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE. IV. THE NEUTRINO SIGNAL. Astrophysical Journal, 2014, 788, 82.	4.5	66
107	Hydrodynamical Neutron-star Kicks in Electron-capture Supernovae and Implications for the CRAB Supernova. Astrophysical Journal, 2018, 865, 61.	4.5	66
108	Fast time variations of supernova neutrino fluxes and their detectability. Physical Review D, 2010, 82, .	4.7	65

#	Article	IF	Citations
109	Magnetar formation through a convective dynamo in protoneutron stars. Science Advances, 2020, 6, eaay2732.	10.3	65
110	Rotating collapse of stellar iron cores in general relativity. Classical and Quantum Gravity, 2007, 24, S139-S154.	4.0	62
111	Intermediate-mass Elements in Young Supernova Remnants Reveal Neutron Star Kicks by Asymmetric Explosions. Astrophysical Journal, 2018, 856, 18.	4.5	62
112	ELECTRON-CAPTURE SUPERNOVAE AS ORIGIN OF ⁴⁸ Ca. Astrophysical Journal Letters, 2013, 767, L26.	8.3	61
113	Core-collapse supernova simulations in one and two dimensions: comparison of codes and approximations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4786-4814.	4.4	58
114	Characterizing SASI- and convection-dominated core-collapse supernova explosions in two dimensions. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2763-2780.	4.4	57
115	Fast neutrino flavor conversion, ejecta properties, and nucleosynthesis in newly-formed hypermassive remnants of neutron-star mergers. Physical Review D, 2020, 102, .	4.7	57
116	Muons in Supernovae: Implications for the Axion-Muon Coupling. Physical Review Letters, 2020, 125, 051104.	7.8	56
117	On the dynamics of proto-neutron star winds and r-process nucleosynthesis. Astronomy and Astrophysics, 2009, 494, 829-844.	5.1	55
118	Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 013-013.	5.4	54
119	ELECTRON-CAPTURE SUPERNOVAE AS SOURCES OF ⁶⁰ Fe. Astrophysical Journal Letters, 2013, 774, L6.	8.3	53
120	Neutrino-Driven Explosions., 2017,, 1095-1150.		53
121	Improved leakage-equilibration-absorption scheme (<scp>ileas</scp>) for neutrino physics in compact object mergers. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4754-4789.	4.4	52
122	NS 1987A in SN 1987A. Astrophysical Journal, 2020, 898, 125.	4.5	52
123	Neutrino absorption and other physics dependencies in neutrino-cooled black hole accretion discs. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1377-1412.	4.4	52
124	NUCLEOSYNTHESIS CONSTRAINTS ON THE NEUTRON STAR-BLACK HOLE MERGER RATE. Astrophysical Journal Letters, 2014, 795, L9.	8.3	51
125	The Birth Function for Black Holes and Neutron Stars in Close Binaries. Astrophysical Journal, 2020, 896, 56.	4.5	50
126	Diffuse supernova neutrino background from extensive core-collapse simulations of 8–100ÂM⊙ progenitors. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1363-1374.	4.4	49

#	Article	IF	Citations
127	Axisymmetric general relativistic simulations of the accretion-induced collapse of white dwarfs. Physical Review D, 2010, 81, .	4.7	48
128	On the characteristics of fast neutrino flavor instabilities in three-dimensional core-collapse supernova models. Physical Review D, 2021, 103, .	4.7	48
129	Low-Energy Supernovae Severely Constrain Radiative Particle Decays. Physical Review Letters, 2022, 128, .	7.8	48
130	Supernova 1987A: neutrino-driven explosions in three dimensions and light curves. Astronomy and Astrophysics, 2015, 581, A40.	5.1	47
131	Equation-of-state constraints and the QCD phase transition in the era of gravitational-wave astronomy. AlP Conference Proceedings, 2019, , .	0.4	45
132	Large-scale Mixing in a Violent Oxygen–Neon Shell Merger Prior to a Core-collapse Supernova. Astrophysical Journal, 2020, 890, 94.	4.5	44
133	IMPACT OF NEUTRINO FLAVOR OSCILLATIONS ON THE NEUTRINO-DRIVEN WIND NUCLEOSYNTHESIS OF AN ELECTRON-CAPTURE SUPERNOVA. Astrophysical Journal, 2015, 808, 188.	4.5	43
134	Neutrino viscosity and drag: impact on the magnetorotational instability in protoneutron stars. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3992-4003.	4.4	43
135	Stellar Collapse Diversity and the Diffuse Supernova Neutrino Background. Astrophysical Journal, 2021, 909, 169.	4.5	43
136	Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. Astronomy and Astrophysics, 2011, 526, A160.	5.1	42
137	Neutrino emission characteristics of black hole formation in three-dimensional simulations of stellar collapse. Physical Review D, 2020, 101, .	4.7	42
138	Fast neutrino flavor conversions in one-dimensional core-collapse supernova models with and without muon creation. Physical Review D, 2021, 103, .	4.7	41
139	Fast neutrino conversion in hydrodynamic simulations of neutrino-cooled accretion disks. Physical Review D, 2022, 105, .	4.7	41
140	Effects of LESA in Three-dimensional Supernova Simulations with Multidimensional and Ray-by-ray-plus Neutrino Transport. Astrophysical Journal, 2019, 881, 36.	4.5	40
141	The fully developed remnant of a neutrino-driven supernova. Astronomy and Astrophysics, 2021, 645, A66.	5.1	40
142	Nucleosynthesis in O-Ne-Mg Supernovae. Astrophysical Journal, 2008, 676, L127-L130.	4.5	39
143	Very Deep inside the SN 1987A Core Ejecta: Molecular Structures Seen in 3D. Astrophysical Journal Letters, 2017, 842, L24.	8.3	39
144	Dynamical ejecta of neutron star mergers with nucleonic weak processes I: nucleosynthesis. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2804-2819.	4.4	39

#	Article	IF	CITATIONS
145	Light-curve Analysis of Ordinary Type IIP Supernovae Based on Neutrino-driven Explosion Simulations in Three Dimensions. Astrophysical Journal, 2017, 846, 37.	4.5	38
146	Supernova Fallback as Origin of Neutron Star Spins and Spin-kick Alignment. Astrophysical Journal, 2022, 926, 9.	4.5	37
147	Neutrino Emission from Supernovae. , 2017, , 1575-1604.		36
148	Emission line models for the lowest mass core-collapse supernovae – I. Case study of a 9 M⊙ one-dimensional neutrino-driven explosion. Monthly Notices of the Royal Astronomical Society, 2018, 475, 277-305.	4.4	36
149	On ion-ion correlation effects during stellar core collapse. Astronomy and Astrophysics, 2005, 443, 201-210.	5.1	36
150	Fission fragment distributions and their impact on the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>r</mml:mi></mml:math> -process nucleosynthesis in neutron star mergers. Physical Review C, 2021, 103, .	2.9	35
151	The 30 Year Search for the Compact Object in SN 1987A. Astrophysical Journal, 2018, 864, 174.	4.5	34
152	Three-dimensional mixing and light curves: constraints on the progenitor of supernova 1987A. Astronomy and Astrophysics, 2019, 624, A116.	5.1	32
153	When do supernova neutrinos of different flavors have similar luminosities but different spectra?. Astroparticle Physics, 1995, 3, 377-383.	4.3	31
154	The $\hat{l}\frac{1}{2}$ -process with Fully Time-dependent Supernova Neutrino Emission Spectra. Astrophysical Journal, 2019, 876, 151.	4.5	31
155	Fast time variations of supernova neutrino signals from 3-dimensional models. Physical Review D, 2012, 86, .	4.7	29
156	Dynamical ejecta of neutron star mergers with nucleonic weak processes – II: kilonova emission. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2820-2840.	4.4	26
157	Resolution Study for Three-dimensional Supernova Simulations with the Prometheus-Vertex Code. Astrophysical Journal, 2020, 891, 27.	4.5	25
158	The infancy of core-collapse supernova remnants. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3264-3293.	4.4	25
159	Solar r-process-constrained actinide production in neutrino-driven winds of supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 459, 4174-4182.	4.4	24
160	Identifying rotation in SASI-dominated core-collapse supernovae with a neutrino gyroscope. Physical Review D, 2018, 98, .	4.7	21
161	Effects of the standing accretion-shock instability and the lepton-emission self-sustained asymmetry in the neutrino emission of rotating supernovae. Physical Review D, 2019, 100, .	4.7	21
162	Properties of gamma-ray decay lines in 3D core-collapse supernova models, with application to SN 1987A and Cas A. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2471-2497.	4.4	21

#	Article	IF	Citations
163	Pulsational pair-instability supernovae: gravitational collapse, black hole formation, and beyond. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4503-4540.	4.4	21
164	Impact of nucleon-nucleon bremsstrahlung rates beyond one-pion exchange. Physical Review D, 2016, 94, .	4.7	19
165	J0453+1559: A Neutron Star–White Dwarf Binary from a Thermonuclear Electron-capture Supernova?. Astrophysical Journal Letters, 2019, 886, L20.	8.3	19
166	Supernova 1987A: 3D Mixing and Light Curves for Explosion Models Based on Binary-merger Progenitors. Astrophysical Journal, 2021, 914, 4.	4.5	18
167	X-Ray and Gamma-Ray Emission from Core-collapse Supernovae: Comparison of Three-dimensional Neutrino-driven Explosions with SN 1987A. Astrophysical Journal, 2019, 882, 22.	4.5	14
168	Synthetic observables for electron-capture supernovae and low-mass core collapse supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 503, 797-814.	4.4	14
169	Gravitational-wave signals from 3D supernova simulations with different neutrino-transport methods. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3552-3567.	4.4	14
170	X-Ray Absorption in Young Core-collapse Supernova Remnants. Astrophysical Journal, 2018, 864, 175.	4.5	13
171	NADA-FLD: a general relativistic, multidimensional neutrino-hydrodynamics code employing flux-limited diffusion. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3545-3572.	4.4	13
172	Low-luminosity type IIP supermnovae: SNÂ2005cs and SNÂ2020cxd as very low-energy iron core-collapse explosions. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4173-4189.	4.4	13
173	Neutrino-driven Type-II supernova explosions and the role of convection. Physics Reports, 1995, 256, 135-156.	25.6	12
174	Supernova deleptonization asymmetry: Impact on self-induced flavor conversion. Physical Review D, 2015, 92, .	4.7	11
175	Spatial distribution of radionuclides in 3D models of SN 1987A and Cas A. Proceedings of the International Astronomical Union, 2017, 12, 148-156.	0.0	8
176	How much H and He is â€~hidden' in SNe lb/c? – II. Intermediate-mass objects: a 22 M⊙ progenitor ca Monthly Notices of the Royal Astronomical Society, 2020, 499, 730-747.	ise study. 4.4	8
177	Neutrino Emission from Supernovae. , 2016, , 1-30.		5
178	Parallelized Solution Method of the Three-dimensional Gravitational Potential on the Yin–Yang Grid. Astrophysical Journal, 2018, 863, 142.	4.5	4
179	Neutrino-Driven Explosions. , 2017, , 1-56.		4
180	ASTRONOMY: The Secrets Behind Supernovae. Science, 2002, 297, 1134-1135.	12.6	3

#	Article	IF	CITATIONS
181	Core-Collapse Supernovae at the Threshold. International Astronomical Union Colloquium, 2005, 192, 253-262.	0.1	3
182	The r-process nucleosynthesis during the decompression of neutron star crust material. Journal of Physics: Conference Series, 2016, 665, 012052.	0.4	2
183	Fast-time Variations of Supernova Neutrino Fluxes and Detection Perspectives. Physics Procedia, 2015, 61, 359-365.	1.2	O
184	Exploring the explosion mechanism of core-collapse supernovae in three dimensions. Proceedings of the International Astronomical Union, 2016, 12, 424-424.	0.0	0
185	Neutron-Star Implosions as Heavy-Element Sources. Physics Magazine, 2017, 10, .	0.1	0
186	Ther-process nucleosynthesis and related challenges. EPJ Web of Conferences, 2017, 165, 01025.	0.3	0
187	How to interpret observations of neutron-star mergers?. Journal of Physics: Conference Series, 2020, 1667, 012018.	0.4	0
188	The SuperN-Project: Current Advances in Understanding Core Collapse Supernovae., 2010,, 17-32.		0
189	3D Simulations of Large-Scale Mixing in Core Collapse Supernova Explosions. , 2010, , 335-346.		0