Sudarson Sekhar Sinha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2792779/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamical Nature of Excitonâ€Polariton Coupling in WS ₂ Nanoparticles. Israel Journal of Chemistry, 2022, 62, .	1.0	7
2	Blocking SARS-CoV-2 Delta Variant (B.1.617.2) Spike Protein Receptor-Binding Domain Binding with the ACE2 Receptor of the Host Cell and Inhibiting Virus Infections Using Human Host Defense Peptide-Conjugated Graphene Quantum Dots. ACS Omega, 2022, 7, 8150-8157.	1.6	10
3	Bio-Conjugated Magnetic-Fluorescence Nanoarchitectures for the Capture and Identification of Lung-Tumor-Derived Programmed Cell Death Lighand 1-Positive Exosomes. ACS Omega, 2022, 7, 16035-16042.	1.6	5
4	Nanotubes from Ternary WS _{2(1–<i>x</i>)} Se _{2<i>x</i>} Alloys: Stoichiometry Modulated Tunable Optical Properties. Journal of the American Chemical Society, 2022, 144, 10530-10542.	6.6	15
5	MoS ₂ and WS ₂ Nanotubes: Synthesis, Structural Elucidation, and Optical Characterization. Journal of Physical Chemistry C, 2021, 125, 6324-6340.	1.5	35
6	Why do nanocrystals of 2D materials form nanotubes and why is that important?. Nano Today, 2021, 37, 101060.	6.2	8
7	Sizeâ€Dependent Control of Exciton–Polariton Interactions in WS ₂ Nanotubes. Small, 2020, 16, e1904390.	5.2	26
8	Nanotubes from Two-Dimensional Materials in Contemporary Energy Research: Historical and Perspective Outlook. ACS Energy Letters, 2020, 5, 1498-1511.	8.8	10
9	Nanotubes: Sizeâ€Đependent Control of Exciton–Polariton Interactions in WS ₂ Nanotubes (Small 4/2020). Small, 2020, 16, 2070022.	5.2	Ο
10	YS-TaS2 and YxLa1–xS-TaS2 (0 ≤ ≤1) Nanotubes: A Family of Misfit Layered Compounds. ACS Nano, 20 14, 5445-5458.	20 <u>.</u> 7.3	10
11	Microbial decolorization and detoxification of emerging environmental pollutant: Cosmetic hair dyes. Journal of Hazardous Materials, 2017, 338, 356-363.	6.5	25
12	Mechanistic Study of the Synergistic Antibacterial Activity of Combined Silver Nanoparticles and Common Antibiotics. Environmental Science & amp; Technology, 2016, 50, 8840-8848.	4.6	210
13	Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis. Accounts of Chemical Research, 2016, 49, 2725-2735.	7.6	114
14	Multimodal Nonlinear Optical Imaging of Live Cells Using Plasmon-Coupled DNA-Mediated Gold Nanoprism Assembly. Journal of Physical Chemistry C, 2016, 120, 4546-4555.	1.5	19
15	Three-dimensional (3D) plasmonic hot spots for label-free sensing and effective photothermal killing of multiple drug resistant superbugs. Nanoscale, 2016, 8, 18301-18308.	2.8	35
16	Development of Multifunctional Fluorescent–Magnetic Nanoprobes for Selective Capturing and Multicolor Imaging of Heterogeneous Circulating Tumor Cells. ACS Applied Materials & Interfaces, 2016, 8, 15076-15085.	4.0	35
17	Designing a multicolor long range nanoscopic ruler for the imaging of heterogeneous tumor cells. Nanoscale, 2016, 8, 13769-13780.	2.8	5
18	Analysis of cytotoxicity and genotoxicity on E. coli, human blood cells and Allium cepa suggests a greater toxic potential of hair dye. Ecotoxicology and Environmental Safety, 2016, 124, 248-254.	2.9	17

#	Article	IF	CITATIONS
19	Influence of Aptamer-Enclosed Silver Nanocluster on the Prevention of Biofilm by <i>Bacillus thuringiensis</i> . Nanoscience and Nanotechnology Letters, 2016, 8, 1054-1060.	0.4	8
20	Hair Dye–DNA Interaction: Plausible Cause of Mutation. Cosmetics, 2015, 2, 313-321.	1.5	5
21	Hybrid Graphene Oxide Based Plasmonic-Magnetic Multifunctional Nanoplatform for Selective Separation and Label-Free Identification of Alzheimer's Disease Biomarkers. ACS Applied Materials & Interfaces, 2015, 7, 13693-13700.	4.0	113
22	Antimicrobial peptide-conjugated graphene oxide membrane for efficient removal and effective killing of multiple drug resistant bacteria. RSC Advances, 2015, 5, 18881-18887.	1.7	99
23	Aptamer-Conjugated Graphene Oxide Membranes for Highly Efficient Capture and Accurate Identification of Multiple Types of Circulating Tumor Cells. Bioconjugate Chemistry, 2015, 26, 235-242.	1.8	98
24	Multifunctional Biocompatible Graphene Oxide Quantum Dots Decorated Magnetic Nanoplatform for Efficient Capture and Two-Photon Imaging of Rare Tumor Cells. ACS Applied Materials & Interfaces, 2015, 7, 10935-10943.	4.0	99
25	Bioconjugated Gold Nanoparticle Based SERS Probe for Ultrasensitive Identification of Mosquito-Borne Viruses Using Raman Fingerprinting. Journal of Physical Chemistry C, 2015, 119, 23669-23675.	1.5	65
26	Long-range two-photon scattering spectroscopy ruler for screening prostate cancer cells. Chemical Science, 2015, 6, 2411-2418.	3.7	17
27	Bio-Conjugated CNT-Bridged 3D Porous Graphene Oxide Membrane for Highly Efficient Disinfection of Pathogenic Bacteria and Removal of Toxic Metals from Water. ACS Applied Materials & Interfaces, 2015, 7, 19210-19218.	4.0	81
28	Hybrid Theranostic Platform for Second Near-IR Window Light Triggered Selective Two-Photon Imaging and Photothermal Killing of Targeted Melanoma Cells. ACS Applied Materials & Interfaces, 2015, 7, 20649-20656.	4.0	40
29	Aptamer-conjugated theranostic hybrid graphene oxide with highly selective biosensing and combined therapy capability. Faraday Discussions, 2014, 175, 257-271.	1.6	27
30	Nanoscopic optical rulers beyond the FRET distance limit: fundamentals and applications. Chemical Society Reviews, 2014, 43, 6370-6404.	18.7	132
31	Multifunctional hybrid graphene oxide for label-free detection of malignant melanoma from infected blood. Journal of Materials Chemistry B, 2014, 2, 1934-1937.	2.9	11
32	Theranostic Graphene Oxide for Prostate Cancer Detection and Treatment. Particle and Particle Systems Characterization, 2014, 31, 1252-1259.	1.2	16
33	Graphene Oxide–Gold Nanocage Hybrid Platform for Trace Level Identification of Nitro Explosives Using a Raman Fingerprint. Journal of Physical Chemistry C, 2014, 118, 7070-7075.	1.5	28
34	Accurate Identification and Selective Removal of Rotavirus Using a Plasmonic–Magnetic 3D Graphene Oxide Architecture. Journal of Physical Chemistry Letters, 2014, 5, 3216-3221.	2.1	33
35	Extremely High Two-Photon Absorbing Graphene Oxide for Imaging of Tumor Cells in the Second Biological Window. Journal of Physical Chemistry Letters, 2014, 5, 2150-2154.	2.1	45
36	Gold Nanocage Assemblies for Selective Second Harmonic Generation Imaging of Cancer Cell. Chemistry - A European Journal, 2014, 20, 1017-1022.	1.7	27

#	Article	IF	CITATIONS
37	Influence of noise shape on excitation kinetics of impurity doped quantum dots. Manufacturing Review, 2014, 1, 3.	0.9	2
38	Highly Efficient and Excitation Tunable Two-Photon Luminescence Platform For Targeted Multi-Color MDRB Imaging Using Graphene Oxide. Scientific Reports, 2014, 4, 6090.	1.6	35
39	Quantum Dissipation in a Spin Bath; Applications to Chemical Dynamics. Proceedings of the Indian National Science Academy, 2014, 80, 949.	0.5	2
40	Excitation kinetics of impurity doped quantum dot driven by Gaussian white noise: Interplay with external field. Chemical Physics, 2013, 426, 54-58.	0.9	10
41	Fluctuation corrections to thermodynamic functions: Finite-size effects. Physical Review E, 2013, 87, 042112.	0.8	9
42	Excitation Kinetics of Impurity Doped Quantum Dot Triggered by Gaussian White Noise. , 2013, 2013, 1-6.		0
43	Canonical formulation of quantum dissipation and noise in a generalized spin bath. Physical Review E, 2012, 86, 011122.	0.8	9
44	Fermionic oscillator in a fermionic bath. Physical Review E, 2012, 86, 011138.	0.8	16
45	Construction of a low-cost laser-based multiplexed spectrometer: a potential probe for environmental pollution monitoring. International Journal of Environment and Waste Management, 2012, 9, 388.	0.2	1
46	Quantum Smoluchowski equation for a spin bath. Physical Review E, 2011, 84, 031118.	0.8	8
47	Dissipation in a spin bath: Thermally induced coherent intensity and spectral splitting. Physical Review E, 2011, 83, 061154.	0.8	9
48	Decay of a metastable state induced by a spin bath. Physical Review E, 2011, 84, 041113.	0.8	8
49	Langevin–Bloch equations for a spin bath. Journal of Chemical Physics, 2011, 134, 094114.	1.2	12
50	Quantum diffusion in a fermionic bath. Physical Review E, 2010, 82, 051125.	0.8	16
51	A versatile fiber-optic coupled system for sensitive optical spectroscopy in strong ambient light. Review of Scientific Instruments, 2009, 80, 053109.	0.6	7
52	Photoreactivity of ZnO nanoparticles in visible light: Effect of surface states on electron transfer reaction. Journal of Applied Physics, 2009, 105, .	1.1	122
53	Sequence Dependent Ultrafast Electron Transfer of Nile Blue in Oligonucleotides. Journal of Fluorescence, 2009, 19, 353-361.	1.3	22
54	Exploration of the Dynamical Evolution and the Associated Energetics of Water Nanoclusters Formed in a Hydrophobic Solvent. Journal of Physical Chemistry B, 2009, 113, 4744-4750.	1.2	21

#	Article	IF	CITATIONS
55	Molecular recognition of plant DNA: Does it differ from conventional animal DNA?. International Journal of Biological Macromolecules, 2009, 44, 133-137.	3.6	6
56	Interactions of Nile Blue with Micelles, Reverse Micelles and a Genomic DNA. Journal of Fluorescence, 2008, 18, 423-432.	1.3	38
57	Two distinct fluorescent quantum clusters of gold starting from metallic nanoparticles by pH-dependent ligand etching. Nano Research, 2008, 1, 333-340.	5.8	169
58	An integrated and open-ended experiment. Resonance, 2008, 13, 54-80.	0.2	1
59	Picosecond to nanosecond reorganization of water in AOT/lecithin mixed reverse micelles of different morphology. Chemical Physics Letters, 2008, 452, 99-104.	1.2	18
60	Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA. Chemical Physics Letters, 2008, 463, 160-165.	1.2	44
61	Sensitized Emission from a Chemotherapeutic Drug Conjugated to CdSe/ZnS QDs. Journal of Physical Chemistry C, 2008, 112, 12716-12720.	1.5	24
62	Temperature-Dependent Simultaneous Ligand Binding in Human Serum Albumin. Journal of Physical Chemistry B, 2008, 112, 4884-4891.	1.2	66
63	Luminescence Depolarization Dynamics of Quantum Dots:  Is It Hydrodynamic Rotation or Exciton Migration?. Journal of Physical Chemistry C, 2008, 112, 3423-3428.	1.5	9
64	Validation and Divergence of the Activation Energy Barrier Crossing Transition at the AOT/Lecithin Reverse Micellar Interface. Journal of Physical Chemistry B, 2008, 112, 2859-2867.	1.2	16
65	Temperature-Dependent Solvation Dynamics of Water in Sodium Bis(2-ethylhexyl)sulfosuccinate/Isooctane Reverse Micelles. Langmuir, 2008, 24, 49-56.	1.6	58
66	Modulation of Dynamics and Reactivity of Water in Reverse Micelles of Mixed Surfactants. Journal of Physical Chemistry B, 2008, 112, 12946-12953.	1.2	48
67	Temperature-Dependent Hydration at Micellar Surface:  Activation Energy Barrier Crossing Model Revisited. Journal of Physical Chemistry B, 2007, 111, 7577-7583.	1.2	43
68	Interplay between Hydration and Electrostatic Attraction in Ligand Binding:  Direct Observation of Hydration Barrier at Reverse Micellar Interface. Journal of Physical Chemistry B, 2007, 111, 14239-14243.	1.2	10
69	Hydration in Protein Folding:  Thermal Unfolding/Refolding of Human Serum Albumin. Langmuir, 2007, 23, 10224-10229.	1.6	58
70	Onset of Buckling in Drying Droplets of Colloidal Suspensions. Physical Review Letters, 2005, 94, 018302.	2.9	274
71	Nanotubes and fullereneâ€like nanoparticles from layered transition metal dichalcogenides: Why do they form and what is their significance?. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	2