Takashi Nonaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2792636/publications.pdf

Version: 2024-02-01

89 papers

10,194 citations

46 h-index 91 g-index

105 all docs 105 docs citations

105 times ranked 10685 citing authors

#	Article	IF	CITATIONS
1	Development of a novel tau propagation mouse model endogenously expressing 3 and 4 repeat tau isoforms. Brain, 2022, 145, 349-361.	3.7	11
2	Phosphorylation of endogenous \hat{l}_{\pm} -synuclein induced by extracellular seeds initiates at the pre-synaptic region and spreads to the cell body. Scientific Reports, 2022, 12, 1163.	1.6	17
3	Casein kinase $1\hat{l}$ phosphorylates fused in sarcoma (FUS) and ameliorates FUS-mediated neurodegeneration. Journal of Biological Chemistry, 2022, 298, 102191.	1.6	1
4	Human tauopathy-derived tau strains determine the substrates recruited for templated amplification. Brain, 2021, 144, 2333-2348.	3.7	17
5	α-Synuclein fibrils subvert lysosome structure and function for the propagation of protein misfolding between cells through tunneling nanotubes. PLoS Biology, 2021, 19, e3001287.	2.6	45
6	Prion-like properties of assembled TDP-43. Current Opinion in Neurobiology, 2020, 61, 23-28.	2.0	13
7	Intracellular dynamics of Ataxin-2 in the human brains with normal and frontotemporal lobar degeneration with TDP-43 inclusions. Acta Neuropathologica Communications, 2020, 8, 176.	2.4	14
8	Dextran sulphate-induced tau assemblies cause endogenous tau aggregation and propagation in wild-type mice. Brain Communications, 2020, 2, fcaa091.	1.5	6
9	\hat{l}_{\pm} -synuclein strains that cause distinct pathologies differentially inhibit proteasome. ELife, 2020, 9, .	2.8	45
10	Human NPCs can degrade α–syn fibrils and transfer them preferentially in a cell contact-dependent manner possibly through TNT-like structures. Neurobiology of Disease, 2019, 132, 104609.	2.1	17
11	Parkinson's disease-associated <i>iPLA2-VIA/</i> PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20689-20699.	3.3	67
12	Phosphorylated and aggregated TDP-43 with seeding properties are induced upon mutant Huntingtin (mHtt) polyglutamine expression in human cellular models. Cellular and Molecular Life Sciences, 2019, 76, 2615-2632.	2.4	19
13	The Wnt/Ca ²⁺ pathway is involved in interneuronal communication mediated by tunneling nanotubes. EMBO Journal, 2019, 38, e101230.	3.5	50
14	TDP-43 Prions. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a024463.	2.9	34
15	Molecular mechanisms of the coâ€deposition of multiple pathological proteins in neurodegenerative diseases. Neuropathology, 2018, 38, 64-71.	0.7	40
16	The effect of truncation on prion-like properties of \hat{l}_{\pm} -synuclein. Journal of Biological Chemistry, 2018, 293, 13910-13920.	1.6	63
17	C9ORF72 dipeptide repeat poly-GA inclusions promote intracellular aggregation of phosphorylated TDP-43. Human Molecular Genetics, 2018, 27, 2658-2670.	1.4	39
18	Prion-like mechanisms and potential therapeutic targets in neurodegenerative disorders., 2017, 172, 22-33.		52

#	Article	IF	Citations
19	Neuron-specific methylome analysis reveals epigenetic regulation and tau-related dysfunction of BRCA1 in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9645-E9654.	3.3	72
20	TDP-43 stabilises the processing intermediates of mitochondrial transcripts. Scientific Reports, 2017, 7, 7709.	1.6	45
21	The Effect of Fragmented Pathogenic α-Synuclein Seeds on Prion-like Propagation. Journal of Biological Chemistry, 2016, 291, 18675-18688.	1.6	88
22	P4â€088: <i>C9Orf72</i> Dipeptide Repeat Proteins Cause Intracellular Aggregation of Phosphorylated TDPâ€43. Alzheimer's and Dementia, 2016, 12, P1046.	0.4	0
23	α-Synuclein Fibrils Exhibit Gain of Toxic Function, Promoting Tau Aggregation and Inhibiting Microtubule Assembly. Journal of Biological Chemistry, 2016, 291, 15046-15056.	1.6	67
24	Chorea as a clinical feature of the basophilic inclusion body disease subtype of fused-in-sarcoma-associated frontotemporal lobar degeneration. Acta Neuropathologica Communications, 2016, 4, 36.	2.4	9
25	Gain-of-function profilin 1 mutations linked to familial amyotrophic lateral sclerosis cause seed-dependent intracellular TDP-43 aggregation. Human Molecular Genetics, 2016, 25, 1420-1433.	1.4	54
26	Templated Aggregation of TAR DNA-binding Protein of 43 kDa (TDP-43) by Seeding with TDP-43 Peptide Fibrils. Journal of Biological Chemistry, 2016, 291, 8896-8907.	1.6	89
27	α-Synuclein: Experimental Pathology. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a024273.	2.9	26
28	Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau. Acta Neuropathologica, 2016, 131, 267-280.	3.9	167
29	Interplay between TDP-43 and docosahexaenoic acid-related processes in amyotrophic lateral sclerosis. Neurobiology of Disease, 2016, 88, 148-160.	2.1	27
30	Neurodegeneration in frontotemporal lobar degeneration and motor neurone disease associated with expansions in <i>C9orf72</i> is linked to TDPâ€43 pathology and not associated with aggregated forms of dipeptide repeat proteins. Neuropathology and Applied Neurobiology, 2016, 42, 242-254.	1.8	61
31	Phosphorylation of TAR DNA-binding Protein of 43 kDa (TDP-43) by Truncated Casein Kinase $1\hat{l}$ Triggers Mislocalization and Accumulation of TDP-43. Journal of Biological Chemistry, 2016, 291, 5473-5483.	1.6	97
32	Inositol Hexakisphosphate Kinase 2 Promotes Cell Death in Cells with Cytoplasmic TDP-43 Aggregation. Molecular Neurobiology, 2016, 53, 5377-5383.	1.9	14
33	Extracellular association of APP and tau fibrils induces intracellular aggregate formation of tau. Acta Neuropathologica, 2015, 129, 895-907.	3.9	65
34	Differential diagnosis of amyotrophic lateral sclerosis from Guillain–Barré syndrome by quantitative determination of TDP-43 in cerebrospinal fluid. International Journal of Neuroscience, 2014, 124, 344-349.	0.8	26
35	Distinct pathways leading to TDP-43-induced cellular dysfunctions. Human Molecular Genetics, 2014, 23, 4345-4356.	1.4	30
36	Pathological alpha-synuclein propagates through neural networks. Acta Neuropathologica Communications, 2014, 2, 88.	2.4	203

3

#	Article	IF	CITATIONS
37	P4-019: PHOSPHORYLATION OF TDP-43 BY CASEIN KINASE 1 DELTA FACILITATES MISLOCALIZATION AND INTRACELLULAR AGGREGATE FORMATION OF TDP-43., 2014, 10, P790-P790.		4
38	Prion-like Properties of Pathological TDP-43 Aggregates from Diseased Brains. Cell Reports, 2013, 4, 124-134.	2.9	418
39	Extensive deamidation at asparagine residue 279 accounts for weak immunoreactivity of tau with RD4 antibody in Alzheimer's disease brain. Acta Neuropathologica Communications, 2013, 1, 54.	2.4	61
40	Prion-like spreading of pathological α-synuclein in brain. Brain, 2013, 136, 1128-1138.	3.7	691
41	Analyses of the MAPT, PGRN, and C9orf72 mutations in Japanese patients with FTLD, PSP, and CBS. Parkinsonism and Related Disorders, 2013, 19, 15-20.	1.1	77
42	Reducing TDP-43 aggregation does not prevent its cytotoxicity. Acta Neuropathologica Communications, 2013, 1, 49.	2.4	20
43	Response to Comment on "Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells― Science Translational Medicine, 2013, 5, 188lr2.	5.8	5
44	Kinase Inhibitor Screening Identifies Cyclin-Dependent Kinases and Glycogen Synthase Kinase 3 as Potential Modulators of TDP-43 Cytosolic Accumulation during Cell Stress. PLoS ONE, 2013, 8, e67433.	1.1	50
45	Molecular analysis and biochemical classification of TDP-43 proteinopathy. Brain, 2012, 135, 3380-3391.	3.7	95
46	Prolonged nitric oxide treatment induces tau aggregation in SH-SY5Y cells. Neuroscience Letters, 2012, 510, 48-52.	1.0	11
47	Epitope mapping of antibodies against TDP-43 and detection of protease-resistant fragments of pathological TDP-43 in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Biochemical and Biophysical Research Communications, 2012, 417, 116-121.	1.0	27
48	Inhibition of TDP-43 Accumulation by Bis(thiosemicarbazonato)-Copper Complexes. PLoS ONE, 2012, 7, e42277.	1.1	44
49	Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells. Science Translational Medicine, 2012, 4, 145ra104.	5.8	465
50	Methylene Blue Reduced Abnormal Tau Accumulation in P301L Tau Transgenic Mice. PLoS ONE, 2012, 7, e52389.	1.1	79
51	Molecular Dissection of TDP-43 Proteinopathies. Journal of Molecular Neuroscience, 2011, 45, 480-485.	1.1	49
52	C-Jun N-terminal kinase controls TDP-43 accumulation in stress granules induced by oxidative stress. Molecular Neurodegeneration, 2011, 6, 57.	4.4	103
53	In vitro recapitulation of aberrant protein inclusions in neurodegenerative diseases. Communicative and Integrative Biology, 2011, 4, 501-502.	0.6	1
54	In vitro recapitulation of aberrant protein inclusions in neurodegenerative diseases: New cellular models of neurodegenerative diseases. Communicative and Integrative Biology, 2011, 4, 501-2.	0.6	1

#	Article	IF	CITATIONS
55	Characterization of Inhibitor-Bound α-Synuclein Dimer: Role of α-Synuclein N-Terminal Region in Dimerization and Inhibitor Binding. Journal of Molecular Biology, 2010, 395, 445-456.	2.0	22
56	Seeded Aggregation and Toxicity of \hat{l}_{\pm} -Synuclein and Tau. Journal of Biological Chemistry, 2010, 285, 34885-34898.	1.6	288
57	Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Human Molecular Genetics, 2009, 18, 3353-3364.	1.4	253
58	Conversion of Wild-type α-Synuclein into Mutant-type Fibrils and Its Propagation in the Presence of A30P Mutant. Journal of Biological Chemistry, 2009, 284, 7940-7950.	1.6	94
59	Phosphorylated and ubiquitinated TDPâ€43 pathological inclusions in ALS and FTLDâ€U are recapitulated in SHâ€SY5Y cells. FEBS Letters, 2009, 583, 394-400.	1.3	107
60	Inhibition of αâ€synuclein fibril assembly by small molecules: Analysis using epitopeâ€specific antibodies. FEBS Letters, 2009, 583, 787-791.	1.3	39
61	Methylene blue and dimebon inhibit aggregation of TDPâ€43 in cellular models. FEBS Letters, 2009, 583, 2419-2424.	1.3	102
62	A Cellular Model To Monitor Proteasome Dysfunction by α-Synuclein. Biochemistry, 2009, 48, 8014-8022.	1.2	49
63	Identification of casein kinase-1 phosphorylation sites on TDP-43. Biochemical and Biophysical Research Communications, 2009, 382, 405-409.	1.0	99
64	Phosphorylated TDPâ€43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Annals of Neurology, 2008, 64, 60-70.	2.8	630
65	Abnormal phosphorylation of Ser409/410 of TDPâ€43 in FTLDâ€U and ALS. FEBS Letters, 2008, 582, 2899-2904.	1.3	170
66	TDP-43 is deposited in the Guam parkinsonism-dementia complex brains. Brain, 2007, 130, 1386-1394.	3.7	210
67	Casein kinase 2 is the major enzyme in brain that phosphorylates Ser129 of human αâ€synuclein: Implication for αâ€synucleinopathies. FEBS Letters, 2007, 581, 4711-4717.	1.3	84
68	Small Molecule Inhibitors of α-Synuclein Filament Assemblyâ€. Biochemistry, 2006, 45, 6085-6094.	1.2	348
69	Cysteine misincorporation in bacterially expressed human α-synuclein. FEBS Letters, 2006, 580, 1775-1779.	1.3	74
70	TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochemical and Biophysical Research Communications, 2006, 351, 602-611.	1.0	2,248
71	Assembly of the Type III Secretion Apparatus of Enteropathogenic Escherichia coli. Journal of Bacteriology, 2006, 188, 2801-2811.	1.0	58
72	BopC Is a Novel Type III Effector Secreted by Bordetella bronchiseptica and Has a Critical Role in Type III-dependent Necrotic Cell Death. Journal of Biological Chemistry, 2006, 281, 6589-6600.	1.6	53

#	Article	IF	Citations
73	Cleavage at the Carboxyl-Terminus of Ku80 during Apoptosis in Human Jurkat T Cells. Journal of Biochemistry, 2005, 137, 685-692.	0.9	4
74	Cleavage of Nonmuscle Myosin Heavy Chain-A during Apoptosis in Human Jurkat T Cells. Journal of Biochemistry, 2005, 137, 157-166.	0.9	19
75	Ubiquitination of α-Synucleinâ€. Biochemistry, 2005, 44, 361-368.	1.2	122
76	Identification of amino-terminally cleaved tau fragments that distinguish progressive supranuclear palsy from corticobasal degeneration. Annals of Neurology, 2004, 55, 72-79.	2.8	170
77	Frontotemporal dementia with Pickâ€ŧype histology associated with Q336R mutation in the tau gene. Brain, 2004, 127, 1415-1426.	3.7	87
78	Neuronal and glial inclusions in frontotemporal dementia with or without motor neuron disease are immunopositive for p62. Neuroscience Letters, 2003, 342, 41-44.	1.0	81
79	Shigella-induced necrosis and apoptosis of U937 cells and J774 macrophages. Microbiology (United) Tj ETQq1 1	0.784314 0.7	rgBT /Over
80	Monitoring of Caspase-8/FLICE Processing and Activation upon Fas Stimulation with Novel Antibodies Directed against a Cleavage Site for Caspase-8 and Its Substrate, FLICE-Like Inhibitory Protein (FLIP). Journal of Biochemistry, 2002, 132, 53-62.	0.9	14
81	Phosphorylated α-Synuclein Is Ubiquitinated in α-Synucleinopathy Lesions. Journal of Biological Chemistry, 2002, 277, 49071-49076.	1.6	365
82	Characterization of mineral deposits formed in cultures of a hamster tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) double-positive cell line (CCP). Cell and Tissue Research, 2002, 309, 269-279.	1.5	3
83	Enolase, a Cellular Glycolytic Enzyme, Is Required for Efficient Transcription of Sendai Virus Genome. Biochemical and Biophysical Research Communications, 2001, 285, 447-455.	1.0	35
84	Establishment and characterization of tartrate-resistant acid phosphatase and alkaline phosphatase double positive cell lines. Cell and Tissue Research, 2001, 304, 351-359.	1.5	6
85	Structure of a new`aspzincin' metalloendopeptidase fromGrifola frondosa: implications for the catalytic mechanism and substrate specificity based on several different crystal forms. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 361-368.	2.5	36
86	Shigella Protein IpaH9.8 Is Secreted from Bacteria within Mammalian Cells and Transported to the Nucleus. Journal of Biological Chemistry, 2001, 276, 32071-32079.	1.6	72
87	Supramolecular structure of the Shigellatype III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO Journal, 2000, 19, 3876-3887.	3.5	224
88	Shigella flexneriYSH6000 induces two types of cell death, apoptosis and oncosis, in the differentiated human monoblastic cell line U937. FEMS Microbiology Letters, 1999, 174, 89-95.	0.7	25
89	Amino Acid Sequences of Metalloendopeptidases Specific for Acyl-Lysine Bonds from Grifola frondosa and Pleurotus ostreatus Fruiting Bodies. Journal of Biological Chemistry, 1997, 272, 30032-30039.	1.6	52