
Baoshan Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2792296/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bibliometric Review of Biodiversity Offsetting During 1992–2019. Chinese Geographical Science, 2022, 32, 189.	1.2	4
2	How Turbidity Mediates the Combined Effects of Nutrient Enrichment and Herbivory on Seagrass Ecosystems. Frontiers in Marine Science, 2022, 9, .	1.2	1
3	Benthic Macroinvertebrate Diversity as Affected by the Construction of Inland Waterways along Montane Stretches of Two Rivers in China. Water (Switzerland), 2022, 14, 1080.	1.2	2
4	Anthropogenic Influences on 2020 Extreme Dry–Wet Contrast over South China. Bulletin of the American Meteorological Society, 2022, 103, S68-S75.	1.7	2
5	Estimating Biomass and Carbon Sequestration Capacity of Phragmites australis Using Remote Sensing and Growth Dynamics Modeling: A Case Study in Beijing Hanshiqiao Wetland Nature Reserve, China. Sensors, 2022, 22, 3141.	2.1	3
6	Responses of Urban Wetland to Climate Change and Human Activities in Beijing: A Case Study of Hanshiqiao Wetland. Sustainability, 2022, 14, 4530.	1.6	4
7	Longitudinal Dynamics of Hydrological Connectivity in the Yellow River Delta, China. Frontiers in Marine Science, 2022, 9, .	1.2	2
8	Drainage Efficiency and Geometric Nuances of Tidal Channel Network Mediate Spartina alterniflora Landward Invasion in Marsh-Channel System. Frontiers in Marine Science, 2022, 9, .	1.2	2
9	Observationâ€Based Evaluation of Local Climate Effect of Terrestrial Vegetation in Temperate Zones. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	1
10	Responses of soil respiration to simulated groundwater table and salinity fluctuations in tidal freshwater, brackish and salt marshes. Journal of Hydrology, 2022, 612, 128215.	2.3	3
11	Biogeomorphological processes and structures facilitate seedling establishment and distribution of annual plants: Implications for coastal restoration. Science of the Total Environment, 2021, 756, 143842.	3.9	12
12	One-step preparation of well-dispersed spindle-like Fe2O3 nanoparticles on g-C3N4 as highly efficient photocatalysts. Ecotoxicology and Environmental Safety, 2021, 208, 111519.	2.9	27
13	Attribution of the Extreme Drought-Related Risk of Wildfires in Spring 2019 over Southwest China. Bulletin of the American Meteorological Society, 2021, 102, S83-S90.	1.7	17
14	Success of coastal wetlands restoration is driven by sediment availability. Communications Earth & Environment, 2021, 2, .	2.6	53
15	Reciprocal facilitation between annual plants and burrowing crabs: Implications for the restoration of degraded saltmarshes. Journal of Ecology, 2021, 109, 1828-1841.	1.9	10
16	Long-Term Dynamics of Different Surface Water Body Types and Their Possible Driving Factors in China. Remote Sensing, 2021, 13, 1154.	1.8	6
17	Effects of interactions between macroalgae and seagrass on the distribution of macrobenthic invertebrate communities at the Yellow River Estuary, China. Marine Pollution Bulletin, 2021, 164, 112057.	2.3	5
18	Mismatch between watershed effects and local efforts constrains the success of coastal salt marsh vegetation restoration. Journal of Cleaner Production, 2021, 292, 126103.	4.6	13

#	Article	IF	CITATIONS
19	Number and nest-site selection of breeding black-necked cranes over the past 40 years in the Longbao Wetland Nature Reserve, Qinghai, China. Big Earth Data, 2021, 5, 217-236.	2.0	6
20	How hydrological connectivity regulates the plant recovery process in salt marshes. Journal of Applied Ecology, 2021, 58, 1314-1324.	1.9	11
21	Artificial modification on lateral hydrological connectivity promotes range expansion of invasive Spartina alterniflora in salt marshes of the Yellow River delta, China. Science of the Total Environment, 2021, 769, 144476.	3.9	13
22	Enhancement of lateral connectivity promotes the establishment of plants in saltmarshes. Science of the Total Environment, 2021, 767, 145484.	3.9	6
23	Scale-dependent biogeomorphic feedbacks control the tidal marsh evolution under Spartina alterniflora invasion. Science of the Total Environment, 2021, 776, 146495.	3.9	12
24	Saltmarsh resilience controlled by patch size and plant density of habitat-forming species that trap shells. Science of the Total Environment, 2021, 778, 146119.	3.9	5
25	Can the native faunal communities be restored from removal of invasive plants in coastal ecosystems? A global metaâ€analysis. Global Change Biology, 2021, 27, 4644-4656.	4.2	22
26	Humic acid mediated toxicity of faceted TiO2 nanocrystals to Daphnia magna. Journal of Hazardous Materials, 2021, 416, 126112.	6.5	9
27	Movement of mud snails affects population dynamics, primary production and landscape heterogeneity in tidal flat ecosystems. Landscape Ecology, 2021, 36, 3493-3506.	1.9	3
28	Quantitatively modeling of tetracycline photodegradation in low molecular weight organic acids under simulated sunlight irradiation. Environmental Pollution, 2021, 286, 117200.	3.7	6
29	An invasive species erodes the performance of coastal wetland protected areas. Science Advances, 2021, 7, eabi8943.	4.7	45
30	A Tale of Two Deltas: Dam-Induced Hydro-Morphological Evolution of the Volta River Delta (Ghana) and Yellow River Delta (China). Water (Switzerland), 2021, 13, 3198.	1.2	1
31	A quantitative approach for offsetting the coastal reclamation impacts on multiple ecosystem services in the Yellow River Delta. Ecosystem Services, 2021, 52, 101382.	2.3	10
32	Physiological and biochemical responses of the salt-marsh plant Spartina alterniflora to long-term wave exposure. Annals of Botany, 2020, 125, 291-300.	1.4	5
33	Modelling longâ€distance floating seed dispersal in salt marsh tidal channels. Ecohydrology, 2020, 13, e2157.	1.1	19
34	Organic phosphorus mineralization characteristics in sediments from the coastal salt marshes of a Chinese delta under simulated tidal cycles. Journal of Soils and Sediments, 2020, 20, 513-523.	1.5	10
35	How Does Spartina alterniflora Invade in Salt Marsh in Relation to Tidal Channel Networks? Patterns and Processes. Remote Sensing, 2020, 12, 2983.	1.8	13
36	A method for evaluating the longitudinal functional connectivity of a river–lake–marsh system and its application in China. Hydrological Processes, 2020, 34, 5278-5297.	1.1	9

#	Article	IF	CITATIONS
37	The Longitudinal Profile of a Prograding River and Its Response to Sea Level Rise. Geophysical Research Letters, 2020, 47, e2020GL090450.	1.5	3
38	A healthy trophic structure underlies the resistance of pristine seagrass beds to nutrient enrichment. Limnology and Oceanography, 2020, 65, 2748-2756.	1.6	4
39	Consumer control and abiotic stresses constrain coastal saltmarsh restoration. Journal of Environmental Management, 2020, 274, 111110.	3.8	16
40	Reclamation shifts the evolutionary paradigms of tidal channel networks in the Yellow River Delta, China. Science of the Total Environment, 2020, 742, 140585.	3.9	18
41	A novel herbivorous wood-borer insect outbreak triggers die-offs of a foundation plant species in coastal ecosystems. Ecosystem Health and Sustainability, 2020, 6, .	1.5	3
42	Efficient tidal channel networks alleviate the drought-induced die-off of salt marshes: Implications for coastal restoration and management. Science of the Total Environment, 2020, 749, 141493.	3.9	19
43	Using <scp>InSAR</scp> to identify hydrological connectivity and barriers in a highly fragmented wetland. Hydrological Processes, 2020, 34, 4417-4430.	1.1	10
44	Potential Effect of Bioturbation by Burrowing Crabs on Sediment Parameters in Coastal Salt Marshes. Wetlands, 2020, 40, 2775-2784.	0.7	6
45	Wave Controls on Deltaic Shorelineâ€Channel Morphodynamics: Insights From a Coupled Model. Water Resources Research, 2020, 56, e2020WR027298.	1.7	6
46	Attribution of the Record-Breaking Consecutive Dry Days in Winter 2017/18 in Beijing. Bulletin of the American Meteorological Society, 2020, 101, S95-S102.	1.7	6
47	Intensive land uses modify assembly process and potential metabolic function of edaphic bacterial communities in the Yellow River Delta, China. Science of the Total Environment, 2020, 720, 137713.	3.9	11
48	Assessing the safe operating space of aquatic macrophyte biomass to control the terrestrialization of a grass-type shallow lake in China. Journal of Environmental Management, 2020, 266, 110479.	3.8	10
49	Hydrological connectivity dynamics of tidal flat systems impacted by severe reclamation in the Yellow River Delta. Science of the Total Environment, 2020, 739, 139860.	3.9	33
50	Windows of opportunity for smooth cordgrass landward invasion to tidal channel margins: The importance of hydrodynamic disturbance to seedling establishment. Journal of Environmental Management, 2020, 266, 110559.	3.8	12
51	Asymmetric responses of spatial variation of different communities to a salinity gradient in coastal wetlands. Marine Environmental Research, 2020, 158, 105008.	1.1	17
52	A model to evaluate spatiotemporal variations of hydrological connectivity on a basin-scale complex river network with intensive human activity. Science of the Total Environment, 2020, 723, 138051.	3.9	30
53	Salt stress alters the short-term responses of nitrous oxide emissions to the nitrogen addition in salt-affected coastal soils. Science of the Total Environment, 2020, 742, 140124.	3.9	16
54	A Network Perspective to Evaluate Hydrological Connectivity Effects on Macroinvertebrate Assemblages. Wetlands, 2020, 40, 2837-2848.	0.7	4

#	Article	IF	CITATIONS
55	An integrative perspective to understand the impact of co-occurring ecosystem engineers on macroinvertebrates. Marine Pollution Bulletin, 2020, 152, 110921.	2.3	3
56	Shifts in the soil bacterial community along a salinity gradient in the Yellow River Delta. Land Degradation and Development, 2020, 31, 2255-2267.	1.8	91
57	Microbial resistance and resilience in response to environmental changes under the higher intensity of human activities than global average level. Global Change Biology, 2020, 26, 2377-2389.	4.2	67
58	Tolerance between non-resource stress and an invader determines competition intensity and importance in an invaded estuary. Science of the Total Environment, 2020, 724, 138225.	3.9	9
59	Topography regulates edaphic suitability for seedling establishment associated with tidal elevation in coastal salt marshes. Geoderma, 2019, 337, 1258-1266.	2.3	30
60	How vegetation influence the macrobenthos distribution in different saltmarsh zones along coastal topographic gradients. Marine Environmental Research, 2019, 151, 104767.	1.1	14
61	Photochemical transformations of tetracycline antibiotics influenced by natural colloidal particles: Kinetics, factor effects and mechanisms. Chemosphere, 2019, 235, 867-875.	4.2	25
62	River network connectivity and fish diversity. Science of the Total Environment, 2019, 689, 21-30.	3.9	64
63	Microtopographic structures facilitate plant recruitment across a saltmarsh tidal gradient. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 1336-1346.	0.9	12
64	Ecological Offsetting in China's Coastal Wetlands: Existing Challenges and Strategies for Future Improvement. Chinese Geographical Science, 2019, 29, 202-213.	1.2	6
65	Trait and density responses of Spartina alterniflora to inundation in the Yellow River Delta, China. Marine Pollution Bulletin, 2019, 146, 857-864.	2.3	20
66	Tracking three decades of land use and land cover transformation trajectories in <scp>C</scp> hina's large river deltas. Land Degradation and Development, 2019, 30, 799-810.	1.8	36
67	Magnetic Damping Constant of CoFeB/Pt Thin Films With Varying the Thicknesses of Pt and Insertion Layer of Al. IEEE Transactions on Magnetics, 2019, 55, 1-5.	1.2	5
68	In-situ organic phosphorus mineralization in sediments in coastal wetlands with different flooding periods in the Yellow River Delta, China. Science of the Total Environment, 2019, 682, 417-425.	3.9	33
69	Impacts of Coastal Reclamation on Natural Wetlands in Large River Deltas in China. Chinese Geographical Science, 2019, 29, 640-651.	1.2	26
70	Native herbivores enhance the resistance of an anthropogenically disturbed salt marsh to <i>Spartina alterniflora</i> invasion. Ecosphere, 2019, 10, e02565.	1.0	22
71	Tidal regime influences the spatial variation in traitâ€based responses of <i>Suaeda salsa</i> and edaphic conditions. Ecosphere, 2019, 10, e02642.	1.0	10
72	Longâ€Term Cumulative Effects of Intraâ€Annual Variability of Unsteady River Discharge on the Progradation of Delta Lobes: A Modeling Perspective. Journal of Geophysical Research F: Earth Surface, 2019, 124, 960-973.	1.0	13

#	Article	IF	CITATIONS
73	Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene. Ecotoxicology and Environmental Safety, 2019, 173, 331-338.	2.9	189
74	Microtopographical modification by a herbivore facilitates the growth of a coastal saltmarsh plant. Marine Pollution Bulletin, 2019, 140, 431-442.	2.3	9
75	Functional consumers regulate the effect of availability of subsidy on trophic cascades in the Yellow River Delta, China. Marine Pollution Bulletin, 2019, 140, 157-164.	2.3	3
76	Weather fluctuations affect the impact of consumers on vegetation recovery following a catastrophic dieâ€off. Ecology, 2019, 100, e02559.	1.5	8
77	Rainfall variation shifts habitat suitability for seedling establishment associated with tidal inundation in salt marshes. Ecological Indicators, 2019, 98, 694-703.	2.6	22
78	Occurrence, sources and ecotoxicological risks of polychlorinated biphenyls (PCBs) in sediment cores from urban, rural and reclamation-affected rivers of the Pearl River Delta, China. Chemosphere, 2019, 218, 359-367.	4.2	34
79	Four decades' dynamics of coastal blue carbon storage driven by land use/land cover transformation under natural and anthropogenic processes in the Yellow River Delta, China. Science of the Total Environment, 2019, 655, 741-750.	3.9	89
80	Management of soil thresholds for seedling emergence to re-establish plant species on bare flats in coastal salt marshes. Hydrobiologia, 2019, 827, 51-63.	1.0	12
81	What drives the distribution of crab burrows in different habitats of intertidal salt marshes, Yellow River Delta, China. Ecological Indicators, 2018, 92, 99-106.	2.6	22
82	Speciation Variation and Comprehensive Risk Assessment of Metal(loid)s in Surface Sediments of Intertidal Zones. International Journal of Environmental Research and Public Health, 2018, 15, 2125.	1.2	7
83	Combined Effects of Unsteady River Discharges and Wave Conditions on River Mouth Bar Morphodynamics. Geophysical Research Letters, 2018, 45, 12,903.	1.5	21
84	Effectiveness of microtopographic structure in species recovery in degraded salt marshes. Marine Pollution Bulletin, 2018, 133, 173-181.	2.3	16
85	Designing microtopographic structures to facilitate seedling recruitment in degraded salt marshes. Ecological Engineering, 2018, 120, 266-273.	1.6	16
86	Comprehensive assessment of soil quality for different wetlands in a Chinese delta. Land Degradation and Development, 2018, 29, 3783-3794.	1.8	37
87	Influence of the natural colloids on the multi-phase distributions of antibiotics in the surface water from the largest lake in North China. Science of the Total Environment, 2017, 578, 649-659.	3.9	51
88	Natural enemies govern ecosystem resilience in the face of extreme droughts. Ecology Letters, 2017, 20, 194-201.	3.0	68
89	Concentration-dependent alterations in gene expression induced by cadmium in Solanum lycopersicum. Environmental Science and Pollution Research, 2017, 24, 10528-10536.	2.7	18
90	Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions. Chemosphere, 2017, 188, 677-688.	4.2	137

#	Article	IF	CITATIONS
91	Integrating within-catchment and interbasin connectivity in riverine and nonriverine freshwater conservation planning in the North China Plain. Journal of Environmental Management, 2017, 204, 1-11.	3.8	8
92	Analysing how plants in coastal wetlands respond to varying tidal regimes throughout their life cycles. Marine Pollution Bulletin, 2017, 123, 113-121.	2.3	16
93	Incorporating thresholds into understanding salinity tolerance: A study using saltâ€ŧolerant plants in salt marshes. Ecology and Evolution, 2017, 7, 6326-6333.	0.8	31
94	Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from the Haihe River, a typical polluted urban river in Northern China. Environmental Science and Pollution Research, 2017, 24, 17153-17165.	2.7	26
95	Depth-distribution, possible sources, and toxic risk assessment of organochlorine pesticides (OCPs) in different river sediment cores affected by urbanization and reclamation in a Chinese delta. Environmental Pollution, 2017, 230, 1062-1072.	3.7	29
96	Towards a biodiversity offsetting approach for coastal land reclamation: Coastal management implications. Biological Conservation, 2017, 214, 35-45.	1.9	32
97	Salinity-oriented environmental flows for keystone species in the Modaomen Estuary, China. Frontiers of Earth Science, 2017, 11, 670-681.	0.9	7
98	Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere, 2017, 184, 278-288.	4.2	257
99	Polychlorinated biphenyls (PCBs) in sediments/soils of different wetlands along 100-year coastal reclamation chronosequence in the Pearl River Estuary, China. Environmental Pollution, 2016, 213, 860-869.	3.7	41
100	Microarray analysis and real-time PCR assay developed to find biomarkers for mercury-contaminated soil. Toxicology Research, 2016, 5, 1539-1547.	0.9	2
101	Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the intertidal zone of Bohai Bay, Northeast China: Spatial distribution, composition, sources and ecological risk assessment. Marine Pollution Bulletin, 2016, 112, 349-358.	2.3	56
102	Consequences and Implications of Anthropogenic Desalination of Salt Marshes on Macrobenthos. Clean - Soil, Air, Water, 2016, 44, 8-15.	0.7	21
103	Retrieval of Water Depth of Coastal Wetlands in the Yellow River Delta From ALOS PALSAR Backscattering Coefficients and Interferometry. IEEE Geoscience and Remote Sensing Letters, 2016, 13, 1517-1521.	1.4	9
104	Temporal–spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China. Science of the Total Environment, 2016, 569-570, 1350-1358.	3.9	119
105	Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers. Scientific Reports, 2016, 6, 34835.	1.6	65
106	Shifting paradigms in coastal restoration: Six decades' lessons from China. Science of the Total Environment, 2016, 566-567, 205-214.	3.9	64
107	Spatial and temporal dynamics of heavy metal pollution and source identification in sediment cores from the short-term flooding riparian wetlands in a Chinese delta. Environmental Pollution, 2016, 219, 379-388.	3.7	94
108	Macrobenthos Diversity Response to Hydrological Connectivity Gradient. Wetlands, 2016, 36, 45-55.	0.7	22

#	Article	IF	CITATIONS
109	Impacts of water level fluctuations on detritus accumulation in Lake Baiyangdian, China. Ecohydrology, 2016, 9, 52-67.	1.1	14
110	Gradient Distribution Patterns of Rhizosphere Bacteria Associated with the Coastal Reclamation. Wetlands, 2016, 36, 69-80.	0.7	9
111	China's Coastal Wetlands: Understanding Environmental Changes and Human Impacts for Management and Conservation. Wetlands, 2016, 36, 1-9.	0.7	96
112	Diversity Pattern of Macrobenthos Associated with Different Stages of Wetland Restoration in the Yellow River Delta. Wetlands, 2016, 36, 57-67.	0.7	43
113	Occurrence and Partitioning of Antibiotics in the Water Column and Bottom Sediments from the Intertidal Zone in the Bohai Bay, China. Wetlands, 2016, 36, 167-179.	0.7	38
114	Decomposition of Phragmites australis rhizomes in artificial land-water transitional zones (ALWTZs) and management implications. Frontiers of Earth Science, 2015, 9, 555-566.	0.9	0
115	Spatial distribution and environmental determinants of denitrification enzyme activity in reed-dominated raised fields. Chinese Geographical Science, 2015, 25, 438-450.	1.2	6
116	The kinetics and QSAR of abiotic reduction of mononitro aromatic compounds catalyzed by activated carbon. Chemosphere, 2015, 119, 835-840.	4.2	9
117	Multiple mechanisms sustain a plant-animal facilitation on a coastal ecotone. Scientific Reports, 2015, 5, 8612.	1.6	28
118	Quantification of intensive hybrid coastal reclamation for revealing its impacts on macrozoobenthos. Environmental Research Letters, 2015, 10, 014004.	2.2	24
119	Assessment of flow paths and confluences for saltwater intrusion in a deltaic river network. Hydrological Processes, 2015, 29, 4549-4558.	1.1	13
120	Biomarker discovery and gene expression responses in Lycopersicon esculentum root exposed to lead. Journal of Hazardous Materials, 2015, 299, 495-503.	6.5	5
121	Polycyclic Aromatic Hydrocarbons in the Food Web of Coastal Wetlands: Distribution, Sources and Potential Toxicity. Clean - Soil, Air, Water, 2015, 43, 881-891.	0.7	16
122	Herbivory drives zonation of stressâ€ŧolerant marsh plants. Ecology, 2015, 96, 1318-1328.	1.5	70
123	Relative effects of human activities and climate change on the river runoff in an arid basin in northwest China. Hydrological Processes, 2014, 28, 4854-4864.	1.1	63
124	Polycyclic aromatic hydrocarbons (PAHs) in wetland soils under different land uses in a coastal estuary: Toxic levels, sources and relationships with soil organic matter and water-stable aggregates. Chemosphere, 2014, 110, 8-16.	4.2	76
125	Economic development and coastal ecosystem change in China. Scientific Reports, 2014, 4, 5995.	1.6	210
126	Wetland Degradation and Ecological Restoration. Scientific World Journal, The, 2013, 2013, 1-2.	0.8	30

#	Article	IF	CITATIONS
127	Construction of River Channelâ€wetland Networks for Controlling Water Pollution in the Pearl River Delta, China. Clean - Soil, Air, Water, 2012, 40, 1027-1035.	0.7	10
128	Wetland Network Design for Mitigation of Saltwater Intrusion by Transferring Tidal Discharge. Clean - Soil, Air, Water, 2012, 40, 1057-1063.	0.7	7
129	Testing the importance of plant strategies on facilitation using congeners in a coastal community. Ecology, 2012, 93, 2023-2029.	1.5	59
130	Multi-scale segregations and edaphic determinants of marsh plant communities in a western Pacific estuary. Hydrobiologia, 2012, 696, 171-183.	1.0	7
131	Surficial and Vertical Distribution of Heavy Metals in Different Estuary Wetlands in the Pearl River, South China. Clean - Soil, Air, Water, 2012, 40, 1174-1184.	0.7	18
132	Wetland Network Design for Mitigation of Saltwater Intrusion by Replenishing Freshwater in an Estuary. Clean - Soil, Air, Water, 2012, 40, 1036-1046.	0.7	10
133	Implementation of Diversified Ecological Networks to Strengthen Wetland Conservation. Clean - Soil, Air, Water, 2012, 40, 1015-1026.	0.7	22
134	A Wetland Network Design for Water Allocation Based on Environmental Flow Requirements. Clean - Soil, Air, Water, 2012, 40, 1047-1056.	0.7	4
135	Relation between Enzyme Activity of Sediments and Lake Eutrophication in Grassâ€Type Lakes in North China. Clean - Soil, Air, Water, 2012, 40, 1145-1153.	0.7	15
136	The Changes of Wetland Network Pattern Associated with Water Quality in the Pearl River Delta, China. Clean - Soil, Air, Water, 2012, 40, 1064-1075.	0.7	7
137	Litter Decomposition of Six Macrophytes in a Eutrophic Shallow Lake (Baiyangdian Lake, China). Clean - Soil, Air, Water, 2012, 40, 1159-1166.	0.7	39
138	Changes in Water Birds Habitat Suitability Following Wetland Restoration in the Yellow River Delta, China. Clean - Soil, Air, Water, 2012, 40, 1076-1084.	0.7	35
139	Spatial variations of river water quality in Pearl River Delta, China. Frontiers of Earth Science, 2012, 6, 291-296.	0.9	6
140	Water Quality Management Based on Division of Dry and Wet Seasons in Pearl River Delta, China. Clean - Soil, Air, Water, 2012, 40, 381-393.	0.7	31
141	Physical Stress, Not Biotic Interactions, Preclude an Invasive Grass from Establishing in Forb-Dominated Salt Marshes. PLoS ONE, 2012, 7, e33164.	1.1	28
142	The importance of facilitation in the zonation of shrubs along a coastal salinity gradient. Journal of Vegetation Science, 2011, 22, 828-836.	1.1	26
143	Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China. Environmental Pollution, 2011, 159, 1297-1306.	3.7	183
144	Determinants of annual–perennial plant zonation across a salt–fresh marsh interface: a multistage assessment. Oecologia, 2011, 166, 1067-1075.	0.9	22

#	Article	IF	CITATIONS
145	Trace element contaminations of roadside soils from two cultivated wetlands after abandonment in a typical plateau lakeshore, China. Stochastic Environmental Research and Risk Assessment, 2011, 25, 91-97.	1.9	21
146	Employing three ratio indices for ecological effect assessment of Manwan Dam construction in the Lancang River, China. River Research and Applications, 2011, 27, 1000-1022.	0.7	19
147	Spatial distribution and temporal variation of reference evapotranspiration during 1961–2006 in the Yellow River Basin, China. Hydrological Sciences Journal, 2011, 56, 1015-1026.	1.2	14
148	Nitrification potential of marsh soils from two natural saline–alkaline wetlands. Biology and Fertility of Soils, 2010, 46, 525-529.	2.3	38
149	Heavy metal contamination of cultivated wetland soils along a typical plateau lake from southwest China. Environmental Earth Sciences, 2010, 59, 1781-1788.	1.3	42
150	The distribution of heavy metal in surface soils and their uptake by plants along roadside slopes in longitudinal range gorge region, China. Environmental Earth Sciences, 2010, 61, 1013-1023.	1.3	12
151	Estimation of ecological water requirements based on habitat response to water level in Huanghe River Delta, China. Chinese Geographical Science, 2010, 20, 318-329.	1.2	22
152	Responses of saltcedar (Tamarix chinensis) to water table depth and soil salinity in the Yellow River Delta, China. Plant Ecology, 2010, 209, 279-290.	0.7	63
153	The temporal trends of reference evapotranspiration and its sensitivity to key meteorological variables in the Yellow River Basin, China. Hydrological Processes, 2010, 24, 2171-2181.	1.1	51
154	A landscape approach for wetland change detection (1979-2009) in the Pearl River Estuary. Procedia Environmental Sciences, 2010, 2, 1265-1278.	1.3	27
155	Heavy Metal Contamination in Riverine Soils Upstream and Downstream of a Hydroelectric Dam on the Lancang River, China. Environmental Engineering Science, 2009, 26, 941-946.	0.8	25
156	Temporal trends of hydro limatic variables and runoff response to climatic variability and vegetation changes in the Yiluo River basin, China. Hydrological Processes, 2009, 23, 3030-3039.	1.1	50
157	Assessment of heavy metal contamination of roadside soils in Southwest China. Stochastic Environmental Research and Risk Assessment, 2009, 23, 341-347.	1.9	79
158	River channel network design for drought and flood control: A case study of Xiaoqinghe River basin, Jinan City, China. Journal of Environmental Management, 2009, 90, 3675-3686.	3.8	72
159	What confines an annual plant to two separate zones along coastal topographic gradients?. Hydrobiologia, 2009, 630, 327-340.	1.0	38
160	Disturbance of Dabao highway construction on plant species and soil nutrients in Longitudinal Range Gorge Region (LRGR) of Southwestern China. Environmental Monitoring and Assessment, 2009, 158, 545-559.	1.3	14
161	Impact of Dam Construction on Water Quality and Water Self-Purification Capacity of the Lancang River, China. Water Resources Management, 2009, 23, 1763-1780.	1.9	145
162	Modeling the depuration rates of polychlorinated biphenyls in two mussel species with theoretical molecular descriptors. Science in China Series B: Chemistry, 2009, 52, 1281-1286.	0.8	1

#	Article	IF	CITATIONS
163	Spatio-temporal analysis of different levels of road expansion on soil erosion distribution: a case study of Fengqing county, Southwest China. Frontiers of Earth Science, 2009, 3, 389-396.	0.5	5
164	Dynamics of the soil water and solute in the sodic saline soil in the Songnen Plain, China. Environmental Earth Sciences, 2009, 59, 837-845.	1.3	26
165	Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecological Engineering, 2009, 35, 1090-1103.	1.6	355
166	Study on the spectral response of Brassica Campestris L. leaf to the copper pollution. Science in China Series D: Earth Sciences, 2008, 51, 202-208.	0.9	39
167	Response of reed community to the environment gradient-water depth in the Yellow River Delta, China. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2008, 3, 194-202.	0.2	3
168	Eco-environmental water demands for the Baiyangdian Wetland. Frontiers of Environmental Science and Engineering in China, 2008, 2, 73-80.	0.8	22
169	Spatiotemporal Change of Ecological Capacity of Lancang River Valley in Yunnan Province. , 2008, , .		0
170	A holistic approach for evaluating ecological water allocation in the Yellow River basin of China. Frontiers of Environmental Science and Engineering in China, 2007, 1, 99-106.	0.8	6
171	Regional ecosystem changes under different cascade hydropower dam construction scenarios in the LRGR. Science Bulletin, 2007, 52, 106-114.	1.7	5
172	Research on spatiotemporal change of ecological capacity and driving forces in the LRGR. Science Bulletin, 2007, 52, 74-81.	1.7	4
173	Statistical regularity of road network features and ecosystem change in the Longitudinal Range-Gorge Region (LRGR). Science Bulletin, 2007, 52, 82-89.	1.7	4
174	Effects of highway construction on soil quality in the Longitudinal Range-Gorge Region in Yunnan Province. Science Bulletin, 2007, 52, 192-202.	1.7	5
175	Effects of road networks on ecosystem service value in the Longitudinal Range-Gorge Region. Science Bulletin, 2007, 52, 180-191.	1.7	4
176	Effects of the expressway on the soil-plant systems in the Longitudinal Range-Gorge Region. Science Bulletin, 2007, 52, 203-212.	1.7	2
177	Study on the spatiotemporal variability of eco-hydrological characteristics of the rivers in the Longitudinal Range-Gorge Region and their driving forces. Science Bulletin, 2007, 52, 122-133.	1.7	0
178	Comparison of changes of typical river segment ecosystem service value in LRGR. Science Bulletin, 2007, 52, 262-272.	1.7	5
179	Mother knows best: maternal oviposition effects of a rangeâ€expanding insect herbivore degrade coastal wetlands by targeting juvenile foundation species. Land Degradation and Development, 0, , .	1.8	0