
V V Utochnikova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2792243/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoluminescence of lanthanide aromatic carboxylates. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2016, 42, 679-694.	1.0	71
2	From Isolated Anions to Polymer Structures through Linking with I ₂ : Synthesis, Structure, and Properties of Two Complex Bismuth(III) Iodine Iodides. Inorganic Chemistry, 2018, 57, 4077-4087.	4.0	68
3	Highly Luminescent, Waterâ€Soluble Lanthanide Fluorobenzoates: Syntheses, Structures and Photophysics, Part I: Lanthanide Pentafluorobenzoates. Chemistry - A European Journal, 2015, 21, 17921-17932.	3.3	58
4	Lanthanide Complexes with 2-(Tosylamino)-benzylidene- <i>N</i> -(aryloyl)hydrazones: Universal Luminescent Materials. Chemistry of Materials, 2019, 31, 759-773.	6.7	52
5	Lanthanide 9-anthracenate: solution processable emitters for efficient purely NIR emitting host-free OLEDs. Journal of Materials Chemistry C, 2016, 4, 9848-9855.	5.5	51
6	"lsolated―DyO ⁺ Embedded in a Ceramic Apatite Matrix Featuring Singleâ€Molecule Magnet Behavior with a High Energy Barrier for Magnetization Relaxation. Angewandte Chemie - International Edition, 2017, 56, 13416-13420.	13.8	49
7	Lanthanide complexes with aromatic o-phosphorylated ligands: synthesis, structure elucidation and photophysical properties. Dalton Transactions, 2014, 43, 3121-3136.	3.3	41
8	Lanthanide complexes with 2-(tosylamino)benzylidene-N-benzoylhydrazone, which exhibit high NIR emission. Dalton Transactions, 2015, 44, 12660-12669.	3.3	38
9	Remarkable high efficiency of red emitters using Eu(<scp>iii</scp>) ternary complexes. Chemical Communications, 2018, 54, 5221-5224.	4.1	36
10	Lanthanide tetrafluorobenzoates as emitters for OLEDs: New approach for host selection. Organic Electronics, 2017, 44, 85-93.	2.6	35
11	Unusual Luminescence Properties of Heterometallic REE Terephthalates. European Journal of Inorganic Chemistry, 2015, 2015, 1660-1664.	2.0	29
12	Lanthanide pyrazolecarboxylates for OLEDs and bioimaging. Journal of Luminescence, 2018, 202, 38-46.	3.1	28
13	Terbium-europium fluorides surface modified with benzoate and terephthalate anions for temperature sensing: Does sensitivity depend on the ligand?. Journal of Luminescence, 2018, 201, 500-508.	3.1	26
14	On the design of new europium heteroaromatic carboxylates for OLED application. Dyes and Pigments, 2019, 170, 107604.	3.7	25
15	On the development of a new approach to the design of lanthanide-based materials for solution-processed OLEDs. Dalton Transactions, 2019, 48, 17298-17309.	3.3	25
16	Brightly luminescent lanthanide pyrazolecarboxylates: Synthesis, luminescent properties and influence of ligand isomerism. Journal of Luminescence, 2019, 205, 429-439.	3.1	25
17	Lanthanide Fluorobenzoates as Bioâ€Probes: a Quest for the Optimal Ligand Fluorination Degree. Chemistry - A European Journal, 2017, 23, 14944-14953.	3.3	24
18	Luminescence Enhancement by <i>p</i> â€Substituent Variation. European Journal of Inorganic Chemistry, 2017, 2017, 107-114.	2.0	24

V V UTOCHNIKOVA

#	Article	IF	CITATIONS
19	The development of a new approach toward lanthanide-based OLED fabrication: new host materials for Tb-based emitters. Dalton Transactions, 2018, 47, 16350-16357.	3.3	24
20	Mixed-ligand terbium hydroxyaromatic carboxylates with o-phenanthroline: luminescence quenching at 300 and 77K. Mendeleev Communications, 2014, 24, 91-93.	1.6	23
21	Mixed-ligand terbium terephthalates: Synthesis, photophysical and thermal properties and use for luminescent terbium terephthalate thin film deposition. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 253, 72-80.	3.9	22
22	Various Structural Design Modifications: <i>para</i> -Substituted Diphenylphosphinopyridine Bridged Cu(I) Complexes in Organic Light-Emitting Diodes. Inorganic Chemistry, 2021, 60, 2315-2332.	4.0	22
23	OLED thin film fabrication from poorly soluble terbium o -phenoxybenzoate through soluble mixed-ligand complexes. Organic Electronics, 2016, 28, 319-329.	2.6	21
24	The peculiarities of complex formation and energy transfer processes in lanthanide complexes with 2-(tosylamino)-benzylidene- <i>N</i> -benzoylhydrazone. Dalton Transactions, 2018, 47, 4524-4533.	3.3	21
25	Novel terbium luminescent complexes with o-phosphorylated phenolate ligands. Inorganic Chemistry Communication, 2012, 20, 73-76.	3.9	20
26	On the Structural Features of Substituted Lanthanide Benzoates. European Journal of Inorganic Chemistry, 2019, 2019, 2320-2332.	2.0	20
27	Luminescence enhancement of nanosized ytterbium and europium fluorides by surface complex formation with aromatic carboxylates. Journal of Luminescence, 2016, 170, 633-640.	3.1	19
28	Surface modified Eu x La 1-x F 3 nanoparticles as luminescent biomarkers: Still plenty of room at the bottom. Dyes and Pigments, 2017, 143, 348-355.	3.7	19
29	New approach to deposition of thin luminescent films of lanthanide aromatic carboxylates. Inorganic Chemistry Communication, 2012, 16, 4-7.	3.9	18
30	Lanthanide Tetrafluoroterephthalates for Luminescent Ink-Jet Printing. European Journal of Inorganic Chemistry, 2017, 2017, 5635-5639.	2.0	17
31	Eu(tta) ₃ DPPZ-based organic light-emitting diodes: spin-coating <i>vs</i> . vacuum-deposition. Dalton Transactions, 2021, 50, 9685-9689.	3.3	17
32	Lanthanide heterometallic terephthalates: Concentration quenching and the principles of the "multiphotonic emission― Optical Materials, 2017, 74, 201-208.	3.6	16
33	Identifying lifetime as one of the key parameters responsible for the low brightness of lanthanide-based OLEDs. Dalton Transactions, 2021, 50, 12806-12813.	3.3	16
34	Gas-phase synthesis of terbium and lutetium carboxylates. Russian Journal of Inorganic Chemistry, 2008, 53, 1878-1884.	1.3	14
35	Reactive chemical vapour deposition (RCVD) of non-volatile terbium aromatic carboxylate thin films. Journal of Materials Chemistry, 2012, 22, 4897.	6.7	14
36	New rare-earth metal acyl pyrazolonates: Synthesis, crystals structures, and luminescence properties. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2014, 40, 627-633.	1.0	14

V V Uτοςηνικονα

#	Article	IF	CITATIONS
37	Europium 2-benzofuranoate: Synthesis and use for bioimaging. Optical Materials, 2017, 74, 191-196.	3.6	14
38	Sensing of H ₂ O in D ₂ O: is there an easy way?. Analyst, The, 2020, 145, 759-763.	3.5	14
39	NIR emitting terephthalates (Sm Dy Gd1)2(tph)3(H2O)4 for luminescence thermometry in the physiological range. Journal of Rare Earths, 2020, 38, 492-497.	4.8	14
40	How does the ligand affect the sensitivity of the luminescent thermometers based on Tb–Eu complexes. Dalton Transactions, 2020, 49, 12156-12160.	3.3	13
41	Gas-phase synthesis of lanthanide(III) benzoates Ln(Bz)3 (Ln = La, Tb, Lu). Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2007, 33, 454-457.	1.0	12
42	Ytterbium complexes with 2-(tosylamino)-benzylidene- <i>N</i> -(2-halobenzoyl)-hydrazones for solution-processable NIR OLEDs. Journal of Materials Chemistry C, 2022, 10, 1371-1380.	5.5	12
43	Rare-Earth Complexes with the 5,5′-Bitetrazolate Ligand - Synthesis, Structure, Luminescence Properties, and Combustion Catalysis. European Journal of Inorganic Chemistry, 2018, 2018, 805-815.	2.0	11
44	Highly NIR-emitting ytterbium complexes containing 2-(tosylaminobenzylidene)- <i>N</i> -benzoylhydrazone anions: structure in solution and use for bioimaging. Dalton Transactions, 2021, 50, 3786-3791.	3.3	11
45	Lanthanide complexes as OLED emitters. Fundamental Theories of Physics, 2021, 59, 1-91.	0.3	11
46	TbO ⁺ in a calcium apatite matrix featuring a triple trigger-type relaxation of magnetization. Dalton Transactions, 2019, 48, 5299-5307.	3.3	10
47	Thin Films of Tb(pobz)3 (Hpobz = 2-phenoxybenzoic acid): Reactive CVD and Optical Properties. ECS Transactions, 2009, 25, 1107-1114.	0.5	9
48	Reactive Chemical Vapor Deposition Method as New Approach for Obtaining Electroluminescent Thin Film Materials. Advances in Materials Science and Engineering, 2012, 2012, 1-9.	1.8	9
49	New approach to increase the sensitivity of Tb–Eu-based luminescent thermometer. Physical Chemistry Chemical Physics, 2020, 22, 25450-25454.	2.8	9
50	Terbium and europium aromatic carboxylates in the polystyrene matrix: The first metal-organic-based material for high-temperature thermometry. Journal of Luminescence, 2021, 239, 118400.	3.1	9
51	Ytterbium complexes with 2-tosylamino-4-bromobenzylidene-halogenbenzoyhydrazones for highly NIR emitting solution-processed OLEDs. Journal of Luminescence, 2022, 244, 118702.	3.1	9
52	NIR luminescence thermometers based on Yb–Nd coordination compounds for the 83–393 K temperature range. Dalton Transactions, 2022, 51, 5419-5425.	3.3	9
53	"Isolated―DyO ⁺ Embedded in a Ceramic Apatite Matrix Featuring Singleâ€Molecule Magnet Behavior with a High Energy Barrier for Magnetization Relaxation. Angewandte Chemie, 2017, 129, 13601-13605.	2.0	8
54	Surface modified LnxLa1-xF3 (Ln = Dy, Yb) nanoparticles: Toward bright NIR luminescence. Dyes and Pigments, 2019, 160, 890-897.	3.7	8

V V UTOCHNIKOVA

#	Article	IF	CITATIONS
55	Superhydrophobic and luminescent highly porous nanostructured alumina monoliths modified with tris(8-hydroxyquinolinato)aluminium. Microporous and Mesoporous Materials, 2020, 293, 109804.	4.4	7
56	Towards efficient terbium-based solution-processed OLEDs: Hole mobility increase by the ligand design. Journal of Alloys and Compounds, 2021, 887, 161319.	5.5	7
57	Dual vis-NIR emissive bimetallic naphthoates of Eu–Yb–Gd: a new approach toward Yb luminescence intensity increase through Eu → Yb energy transfer. Physical Chemistry Chemical Physics, 2021, 23, 7213-7219.	2.8	7
58	Record efficiency of 1000 nm electroluminescence from a solution-processable host-free OLED. Dalton Transactions, 2022, 51, 3833-3838.	3.3	7
59	Ytterbium and Europium Complexes with Naphtho[1,2]thiazole-2-carboxylic and Naphtho[2,1]thiazole-2-carboxylic Acid Anions for Organic Light-Emitting Diodes (OLED). Russian Journal of Inorganic Chemistry, 2021, 66, 170-178.	1.3	5
60	Novel ytterbium Schiff base complex: Toward efficient solution-processed NIR-emitting OLED. Organic Electronics, 2022, 105, 106492.	2.6	5
61	Solution and gas-phase synthesis of the heteroligand yttrium complex with dipivaloylmethane and bis(salicylidene)ethylenediamine Y(dpm)(salen). Moscow University Chemistry Bulletin, 2007, 62, 226-229.	0.6	4
62	EXAFS characterisation of metal bonding in highly luminescent, UV stable, water-soluble and biocompatible lanthanide complexes. Journal of Physics: Conference Series, 2016, 712, 012137.	0.4	4
63	Eu-doped cholesteric mixtures with a highly thermosensitive circular polarization of luminescence. Journal of Molecular Liquids, 2021, 341, 117431.	4.9	2
64	Europium complexes with dinitropyrazole: unusual luminescence thermal behavior and irreversible temperature sensing. Physical Chemistry Chemical Physics, 2021, 23, 25480-25484.	2.8	2
65	Front Cover: Lanthanide Tetrafluoroterephthalates for Luminescent Ink-Jet Printing (Eur. J. Inorg.) Tj ETQq1 1 0.78	34314 rgB	T /Overlock
66	Lanthanide Tetrafluoroterephthalates for Luminescent Ink-Jet Printing. European Journal of Inorganic Chemistry, 2017, 2017, 5630-5630.	2.0	0