Peeter Paris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2792057/publications.pdf Version: 2024-02-01

DEETED DADIS

#	Article	IF	CITATIONS
1	Laser induced breakdown spectroscopy for hydrogen detection in molybdenum at atmospheric pressure mixtures of argon and nitrogen. Fusion Engineering and Design, 2022, 179, 113131.	1.9	9
2	LIBS study of ITER relevant tungsten–oxygen coatings exposed to deuterium plasma in Magnum-PSI. Journal of Nuclear Materials, 2021, 544, 152660.	2.7	12
3	Application of Y–ZrO2 microtubes as dielectric barrier material in a He atmospheric pressure micro-plasma jet. SN Applied Sciences, 2021, 3, 1.	2.9	3
4	Experimental determination of first Townsend ionization coefficient in mixtures of He and N2. Journal Physics D: Applied Physics, 2021, 54, 325202.	2.8	8
5	CF-LIBS quantification and depth profile analysis of Be coating mixed layers. Nuclear Materials and Energy, 2021, 27, 100990.	1.3	11
6	In-situ LIBS and NRA deuterium retention study in porous W-O and compact W coatings loaded by Magnum-PSI. Fusion Engineering and Design, 2021, 168, 112403.	1.9	9
7	LIBS applicability for investigation of re-deposition and fuel retention in tungsten coatings exposed to pure and nitrogen-mixed deuterium plasmas of Magnum-PSI. Physica Scripta, 2021, 96, 114010.	2.5	4
8	Experimental determination of the first Townsend ionization coefficient in mixtures of Ar and N2. Journal Physics D: Applied Physics, 2021, 54, 465201.	2.8	4
9	Monitoring of tritium and impurities in the first wall of fusion devices using a LIBS based diagnostic. Nuclear Fusion, 2021, 61, 125001.	3.5	31
10	Quantification of H/D content in Be/W mixtures coatings by CF-LIBS. Physica Scripta, 2020, 2020, 014073.	2.5	15
11	Comparison of LIBS results on ITER-relevant samples obtained by nanosecond and picosecond lasers. Nuclear Materials and Energy, 2019, 18, 1-5.	1.3	16
12	Effective ionization coefficient of C5 perfluorinated ketone and its mixtures with air. Journal Physics D: Applied Physics, 2018, 51, 135205.	2.8	26
13	DETERMINATION OF THE CALORIFIC VALUE AND MOISTURE CONTENT OF CRUSHED OIL SHALE BY LIBS. Oil Shale, 2018, 35, 339.	1.0	5
14	Determination of Heating Value of Estonian Oil Shale by Laser-Induced Breakdown Spectroscopy. Journal of Spectroscopy, 2018, 2018, 1-10.	1.3	5
15	Dependence of LIBS spectra on the surface composition and morphology of W/Al coatings. Fusion Engineering and Design, 2017, 121, 296-300.	1.9	9
16	Micro-NRA and micro-3HIXE with 3 He microbeam on samples exposed in ASDEX Upgrade and Pilot-PSI machines. Nuclear Instruments & Methods in Physics Research B, 2017, 404, 179-184.	1.4	5
17	Loading of deuterium and helium by Pilot-PSI plasma and their detection by in-situ LIBS. Nuclear Materials and Energy, 2017, 12, 694-698.	1.3	9
18	LIBS detection of erosion/deposition and deuterium retention resulting from exposure to Pilot-PSI plasmas. Journal of Nuclear Materials, 2017, 489, 129-136.	2.7	19

PEETER PARIS

#	Article	IF	CITATIONS
19	Detection of deuterium retention by LIBS at different background pressures. Physica Scripta, 2017, T170, 014003.	2.5	18
20	Determination of deuterium depth profiles in fusion-relevant wall materials by nanosecond LIBS. Nuclear Materials and Energy, 2017, 12, 611-616.	1.3	33
21	Plasma–wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification. Nuclear Fusion, 2017, 57, 116041.	3.5	75
22	Development of Ionization waves in an Atmosphericâ€Pressure Microâ€Plasma Jet. Contributions To Plasma Physics, 2016, 56, 134-145.	1.1	9
23	The effect of dielectric tube diameter on the propagation velocity of ionization waves in a He atmospheric-pressure micro-plasma jet. Journal Physics D: Applied Physics, 2016, 49, 195201.	2.8	25
24	Development of laser induced breakdown spectroscopy for studying erosion, deposition, and fuel retention in ASDEX Upgrade. Fusion Engineering and Design, 2015, 98-99, 1349-1352.	1.9	28
25	Overview of the JET results. Nuclear Fusion, 2015, 55, 104001.	3.5	50
26	Applicability of LIBS for in situ monitoring of deposition and retention on the ITER-like wall of JET – Comparison to SIMS. Journal of Nuclear Materials, 2015, 463, 931-935.	2.7	34
27	LIBS analysis of tungsten coatings exposed to Magnum PSI ELM-like plasma. Journal of Nuclear Materials, 2015, 463, 919-922.	2.7	25
28	Feasibility of arc-discharge and plasma-sputtering methods in cleaning plasma-facing and diagnostics components of fusion reactors. Fusion Engineering and Design, 2015, 96-97, 101-106.	1.9	7
29	Discrimination of moist oil shale and limestone using laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 107, 61-66.	2.9	20
30	LIBS for tungsten diagnostics in vacuum: Selection of analytes. Journal of Nuclear Materials, 2015, 463, 923-926.	2.7	15
31	Development of laser-induced breakdown spectroscopy for analyzing deposited layers in ITER. Physica Scripta, 2014, T159, 014067.	2.5	21
32	Influence of He/D2 plasma fluxes on the morphology and crystallinity of tungsten coatings. Physica Scripta, 2014, 89, 044009.	2.5	3
33	Ozone generation efficiency as a function of electric field strength in air. Journal Physics D: Applied Physics, 2014, 47, 335205.	2.8	14
34	The influence of the tube diameter on the properties of an atmospheric pressure He micro-plasma jet. Journal Physics D: Applied Physics, 2014, 47, 415202.	2.8	38
35	Overview of the JET results with the ITER-like wall. Nuclear Fusion, 2013, 53, 104002.	3.5	70
36	Erosion of marker coatings exposed to Pilot-PSI plasma. Journal of Nuclear Materials, 2013, 438, S754-S757.	2.7	7

PEETER PARIS

#	Article	IF	CITATIONS
37	Development of ITER relevant laser techniques for deposited layer characterisation and tritium inventory. Journal of Nuclear Materials, 2013, 438, S936-S939.	2.7	35
38	Development of laser-based techniques for <i>in situ</i> characterization of the first wall in ITER and future fusion devices. Nuclear Fusion, 2013, 53, 093002.	3.5	99
39	Laser-based diagnostics applications for plasma-surface interaction studies. Journal of Instrumentation, 2013, 8, C11011-C11011.	1.2	7
40	Ozone production rate as a function of electric field strength in oxygen. Journal Physics D: Applied Physics, 2012, 45, 205201.	2.8	6
41	Determination of elemental depth profiles by multi-spot averaging technique of LIBS spectra. Fusion Engineering and Design, 2011, 86, 1125-1128.	1.9	27
42	Measurement of collisional quenching rate of nitrogen states N ₂ (C ³ Î _u , v = 0) and. Journal Physics D: Applied Physics, 2010, 43, 385202.	2.8	71
43	Laser ablation of thin tungsten layers deposited on carbon substrate. Fusion Engineering and Design, 2009, 84, 1465-1467.	1.9	11
44	Laser ablation in air: nature of current pulses. Journal Physics D: Applied Physics, 2008, 41, 055201.	2.8	2
45	Reply to comments on â€`Intensity ratio of spectral bands of nitrogen as a measure of electric field strength in plasmas'. Journal Physics D: Applied Physics, 2006, 39, 2636-2639.	2.8	31
46	Laser-induced current in air gap at atmospheric pressure. Journal Physics D: Applied Physics, 2005, 38, 3900-3906.	2.8	3
47	Intensity ratio of spectral bands of nitrogen as a measure of electric field strength in plasmas. Journal Physics D: Applied Physics, 2005, 38, 3894-3899.	2.8	197
48	Measurement of intensity ratio of nitrogen bands as a function of field strength. Journal Physics D: Applied Physics, 2004, 37, 1179-1184.	2.8	57
49	Negative coronas: Low current mode – pulse mode transition. European Physical Journal D, 1999, 49, 217-224.	0.4	9
50	Study of corona discharge aerosol with an electrical aerosol spectrometer. Journal of Aerosol Science, 1998, 29, S845-S846.	3.8	4
51	Triggering of Negative Corona. European Physical Journal Special Topics, 1997, 07, C4-259-C4-270.	0.2	11
52	The multi-avalanche nature of streamer formation in inhomogeneous fields. Journal Physics D: Applied Physics, 1994, 27, 970-978.	2.8	21
53	On the formation of negative coronas. Journal Physics D: Applied Physics, 1993, 26, 231-236.	2.8	12