
Margarida Duarte Amaral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2791644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systems Approaches to Unravel Molecular Function: High-content siRNA Screen Identifies TMEM16A Traffic Regulators as Potential Drug Targets for Cystic Fibrosis. Journal of Molecular Biology, 2022, 434, 167436.	4.2	3
2	Rescue of Mutant CFTR Trafficking Defect by the Investigational Compound MCG1516A. Cells, 2022, 11, 136.	4.1	11
3	CFTR interactome mapping using the mammalian membrane twoâ€hybrid highâ€throughput screening system. Molecular Systems Biology, 2022, 18, e10629.	7.2	13
4	CFTR, Cell Junctions and the Cytoskeleton. International Journal of Molecular Sciences, 2022, 23, 2688.	4.1	7
5	Precision medicine for rare diseases: The times they are A-Changin'. Current Opinion in Pharmacology, 2022, 63, 102201.	3.5	7
6	Rare Trafficking CFTR Mutations Involve Distinct Cellular Retention Machineries and Require Different Rescuing Strategies. International Journal of Molecular Sciences, 2022, 23, 24.	4.1	15
7	Exploring YAP1-centered networks linking dysfunctional CFTR to epithelial–mesenchymal transition. Life Science Alliance, 2022, 5, e202101326.	2.8	6
8	How to determine the mechanism of action of CFTR modulator compounds: A gateway to theranostics. European Journal of Medicinal Chemistry, 2021, 210, 112989.	5.5	10
9	Extensive CFTR sequencing through NGS in Brazilian individuals with cystic fibrosis: unravelling regional discrepancies in the country. Journal of Cystic Fibrosis, 2021, 20, 473-484.	0.7	7
10	Personalized Medicine Based on Nasal Epithelial Cells: Comparative Studies with Rectal Biopsies and Intestinal Organoids. Journal of Personalized Medicine, 2021, 11, 421.	2.5	19
11	Enhanced Expression of Human Epididymis Protein 4 (HE4) Reflecting Pro-Inflammatory Status Is Regulated by CFTR in Cystic Fibrosis Bronchial Epithelial Cells. Frontiers in Pharmacology, 2021, 12, 592184.	3.5	10
12	Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. Journal of Experimental Pharmacology, 2021, Volume 13, 693-723.	3.2	24
13	Pediatric population with cystic fibrosis in the centre of Portugal: Candidates for new therapies. Jornal De Pediatria, 2021, , .	2.0	0
14	Cross-talk of inflammatory mediators and airway epithelium reveals the cystic fibrosis transmembrane conductance regulator as a major target. ERJ Open Research, 2021, 7, 00247-2021.	2.6	6
15	An open-source high-content analysis workflow for CFTR function measurements using the forskolin-induced swelling assay. Bioinformatics, 2021, 36, 5686-5694.	4.1	6
16	CyFi-MAP: an interactive pathway-based resource for cystic fibrosis. Scientific Reports, 2021, 11, 22223.	3.3	6
17	Integrity and Stability of PTC Bearing CFTR mRNA and Relevance to Future Modulator Therapies in Cystic Fibrosis. Genes, 2021, 12, 1810.	2.4	9
18	Synergy in Cystic Fibrosis Therapies: Targeting SLC26A9. International Journal of Molecular Sciences, 2021, 22, 13064.	4.1	14

#	Article	IF	CITATIONS
19	CFTR processing, trafficking and interactions. Journal of Cystic Fibrosis, 2020, 19, S33-S36.	0.7	19
20	Activating alternative chloride channels to treat CF: Friends or Foes?. Journal of Cystic Fibrosis, 2020, 19, 11-15.	0.7	6
21	Impact of KLF4 on Cell Proliferation and Epithelial Differentiation in the Context of Cystic Fibrosis. International Journal of Molecular Sciences, 2020, 21, 6717.	4.1	9
22	Rescue of common exonâ€skipping mutations in cystic fibrosis with modified U1 snRNAs. Human Mutation, 2020, 41, 2143-2154.	2.5	6
23	Letter to the editor of JCF. Journal of Cystic Fibrosis, 2020, 19, 503.	0.7	Ο
24	Organoids as a personalized medicine tool for ultra-rare mutations in cystic fibrosis: The case of S955P and 1717-2A>G. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165905.	3.8	7
25	Protocol for Application, Standardization and Validation of the Forskolin-Induced Swelling Assay in Cystic Fibrosis Human Colon Organoids. STAR Protocols, 2020, 1, 100019.	1.2	69
26	Mutant CFTR Drives TWIST1 mediated epithelial–mesenchymal transition. Cell Death and Disease, 2020, 11, 920.	6.3	29
27	Assessment of Distinct Electrophysiological Parameters in Rectal Biopsies for the Choice of the Best Diagnosis/Prognosis Biomarkers for Cystic Fibrosis. Frontiers in Physiology, 2020, 11, 604580.	2.8	6
28	Laboratory biomarkers for lung disease severity and progression in cystic fibrosis. Clinica Chimica Acta, 2020, 508, 277-286.	1.1	11
29	What Role Does CFTR Play in Development, Differentiation, Regeneration and Cancer?. International Journal of Molecular Sciences, 2020, 21, 3133.	4.1	42
30	Regulation of TMEM16A by CK2 and Its Role in Cellular Proliferation. Cells, 2020, 9, 1138.	4.1	13
31	Cystic fibrosis drug trial design in the era of CFTR modulators associated with substantial clinical benefit: stakeholders' consensus view. Journal of Cystic Fibrosis, 2020, 19, 688-695.	0.7	14
32	Rationale and design of the HIT-CF organoid study: stratifying cystic fibrosis patients based on intestinal organoid response to different CFTR-modulators. Translational Medicine Communications, 2020, 5, .	1.4	10
33	Characterization of the mechanism of action of RDR01752, a novel corrector of F508del-CFTR. Biochemical Pharmacology, 2020, 180, 114133.	4.4	14
34	Full Rescue of F508del-CFTR Processing and Function by CFTR Modulators Can Be Achieved by Removal of Two Regulatory Regions. International Journal of Molecular Sciences, 2020, 21, 4524.	4.1	8
35	KLF4 Acts as a wt-CFTR Suppressor through an AKT-Mediated Pathway. Cells, 2020, 9, 1607.	4.1	11
36	A central role of the endoplasmic reticulum in the cell emerges from its functional contact sites with multiple organelles. Cellular and Molecular Life Sciences, 2020, 77, 4729-4745.	5.4	16

#	Article	IF	CITATIONS
37	Cytoskeleton regulators CAPZA2 and INF2 associate with CFTR to control its plasma membrane levels under EPAC1 activation. Biochemical Journal, 2020, 477, 2561-2580.	3.7	13
38	The effect of premature termination codon mutations on <i>CFTR</i> mRNA abundance in human nasal epithelium and intestinal organoids: a basis for readâ€ŧhrough therapies in cystic fibrosis. Human Mutation, 2019, 40, 326-334.	2.5	19
39	CFTR modulator theratyping: Current status, gaps and future directions. Journal of Cystic Fibrosis, 2019, 18, 22-34.	0.7	208
40	R560S: A class II CFTR mutation that is not rescued by current modulators. Journal of Cystic Fibrosis, 2019, 18, 182-189.	0.7	25
41	Speeding up access to new drugs for CF: Considerations for clinical trial design and delivery. Journal of Cystic Fibrosis, 2019, 18, 677-684.	0.7	18
42	Theranostics by testing CFTR modulators in patient-derived materials: The current status and a proposal for subjects with rare CFTR mutations. Journal of Cystic Fibrosis, 2019, 18, 685-692.	0.7	30
43	Inhibition of calpain 1 restores plasma membrane stability to pharmacologically rescued Phe508del-CFTR variant. Journal of Biological Chemistry, 2019, 294, 13396-13410.	3.4	15
44	Extent of rescue of F508del-CFTR function by VX-809 and VX-770 in human nasal epithelial cells correlates with SNP rs7512462 in SLC26A9 gene in F508del/F508del Cystic Fibrosis patients. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1323-1331.	3.8	28
45	Folding Status Is Determinant over Traffic-Competence in Defining CFTR Interactors in the Endoplasmic Reticulum. Cells, 2019, 8, 353.	4.1	21
46	Increases in cytosolic Ca2+ induce dynamin- and calcineurin-dependent internalisation of CFTR. Cellular and Molecular Life Sciences, 2019, 76, 977-994.	5.4	13
47	Human epididymis protein 4 (HE4) levels inversely correlate with lung function improvement (delta) Tj ETQq1 271-277.	1 0.784314 rg 0.7	gBT /Overloc 18
48	TMEM16A chloride channel does not drive mucus production. Life Science Alliance, 2019, 2, e201900462.	2.8	21
49	A Mathematical Model of the Phosphoinositide Pathway. Scientific Reports, 2018, 8, 3904.	3.3	19
50	Partial rescue of F508delâ€cystic fibrosis transmembrane conductance regulator channel gating with modest improvement of protein processing, but not stability, by a dualâ€acting small molecule. British Journal of Pharmacology, 2018, 175, 1017-1038.	5.4	17
51	Compartmentalized crosstalk of CFTR and TMEM16A (ANO1) through EPAC1 and ADCY1. Cellular Signalling, 2018, 44, 10-19.	3.6	41
52	A novel microscopy-based assay identifies extended synaptotagmin-1 (ESYT1) as a positive regulator of anoctamin 1 traffic. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 421-431.	4.1	19
53	Cystic Fibrosis Newborn Screening in Portugal: PAP Value in Populations with Stringent Rules for Genetic Studies. International Journal of Neonatal Screening, 2018, 4, 22.	3.2	16
54	Prolonged co-treatment with HGF sustains epithelial integrity and improves pharmacological rescue of Phe508del-CFTR. Scientific Reports, 2018, 8, 13026.	3.3	23

#	Article	IF	CITATIONS
55	Proteomic interaction profiling reveals KIFC1 as a factor involved in early targeting of F508del-CFTR to degradation. Cellular and Molecular Life Sciences, 2018, 75, 4495-4509.	5.4	22
56	Cystic fibrosis: Beyond the airways. Report on the meeting of the basic science working group in Loutraki, Greece. Journal of Cystic Fibrosis, 2018, 17, 441-443.	0.7	0
57	mRNA â€based detection of rare CFTR mutations improves genetic diagnosis of cystic fibrosis in populations with high genetic heterogeneity. Clinical Genetics, 2017, 91, 476-481.	2.0	12
58	Ethnicity impacts the cystic fibrosis diagnosis: A note of caution. Journal of Cystic Fibrosis, 2017, 16, 488-491.	0.7	34
59	Epithelial Chloride Transport by CFTR Requires TMEM16A. Scientific Reports, 2017, 7, 12397.	3.3	100
60	Sweat test and cystic fibrosis: overview of test performance at public and private centers in the state of São Paulo, Brazil. Jornal Brasileiro De Pneumologia, 2017, 43, 121-128.	0.7	18
61	Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides. Human Mutation, 2016, 37, 209-215.	2.5	66
62	EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1. Journal of Cell Science, 2016, 129, 2599-612.	2.0	56
63	Progress in therapies for cystic fibrosis. Lancet Respiratory Medicine, the, 2016, 4, 662-674.	10.7	324
64	The third dimension: new developments in cell culture models for colorectal research. Cellular and Molecular Life Sciences, 2016, 73, 3971-3989.	5.4	40
65	Human Epididymis Protein 4: A Novel Serum Inflammatory Biomarker in CysticÂFibrosis. Chest, 2016, 150, 661-672.	0.8	45
66	Investigating Alternative Transport of Integral Plasma Membrane Proteins from the ER to the Golgi: Lessons from the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Methods in Molecular Biology, 2016, 1459, 105-126.	0.9	7
67	Relationship between TMEM16A/anoctamin 1 and LRRC8A. Pflugers Archiv European Journal of Physiology, 2016, 468, 1751-1763.	2.8	29
68	Classification of CFTR mutation classes – Authors' reply. Lancet Respiratory Medicine,the, 2016, 4, e39.	10.7	5
69	Comparative ex vivo, in vitro and in silico analyses of a CFTR splicing mutation: Importance of functional studies to establish disease liability of mutations. Journal of Cystic Fibrosis, 2016, 15, 21-33.	0.7	22
70	Finding new drugs to enhance anion secretion in cystic fibrosis: Toward suitable systems for better drug screening. Report on the pre-conference meeting to the 12th ECFS Basic Science Conference, Albufeira, 25–28 March 2015. Journal of Cystic Fibrosis, 2015, 14, 700-705.	0.7	2
71	Increased efficacy of <scp>VX</scp> â€809 in different cellular systems results from an early stabilization effect of F508delâ€ <scp>CFTR</scp> . Pharmacology Research and Perspectives, 2015, 3, e00152.	2.4	39
72	Protein Traffic Disorders: an Effective High-Throughput Fluorescence Microscopy Pipeline for Drug Discovery. Scientific Reports, 2015, 5, 9038.	3.3	55

#	Article	IF	CITATIONS
73	Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators. Genomics, 2015, 106, 268-277.	2.9	32
74	Measurements of Functional Responses in Human Primary Lung Cells as a Basis for Personalized Therapy for Cystic Fibrosis. EBioMedicine, 2015, 2, 147-153.	6.1	79
75	Cystic fibrosis — From basic science to clinical benefit: A review series. Journal of Cystic Fibrosis, 2015, 14, 415-416.	0.7	5
76	A molecular switch in the scaffold NHERF1 enables misfolded CFTR to evade the peripheral quality control checkpoint. Science Signaling, 2015, 8, ra48.	3.6	47
77	Hallmarks of therapeutic management of the cystic fibrosis functional landscape. Journal of Cystic Fibrosis, 2015, 14, 687-699.	0.7	44
78	Pharmacological evaluation of hybrid thiazolidin-4-one-1,3,5-triazines for NF-κB, biofilm and CFTR activity. RSC Advances, 2015, 5, 88710-88718.	3.6	30
79	Novel personalized therapies for cystic fibrosis: treating the basic defect in all patients. Journal of Internal Medicine, 2015, 277, 155-166.	6.0	82
80	New pharmacological approaches for cystic fibrosis: Promises, progress, pitfalls. , 2015, 145, 19-34.		140
81	LMTK2-mediated Phosphorylation Regulates CFTR Endocytosis in Human Airway Epithelial Cells. Journal of Biological Chemistry, 2014, 289, 15080-15093.	3.4	43
82	Assessing the residual CFTR gene expression in human nasal epithelium cells bearing CFTR splicing mutations causing cystic fibrosis. European Journal of Human Genetics, 2014, 22, 784-791.	2.8	24
83	Experimental Assessment of Splicing Variants Using Expression Minigenes and Comparison with In Silico Predictions. Human Mutation, 2014, 35, 1249-1259.	2.5	56
84	Revertant mutants modify, but do not rescue, the gating defect of the cystic fibrosis mutant G551D FTR. Journal of Physiology, 2014, 592, 1931-1947.	2.9	19
85	CFTR functional measurements in human models for diagnosis, prognosis and personalized therapy. Journal of Cystic Fibrosis, 2014, 13, 363-372.	0.7	34
86	Rectal forceps biopsy procedure in cystic fibrosis: technical aspects and patients perspective for clinical trials feasibility. BMC Gastroenterology, 2013, 13, 91.	2.0	24
87	Changes in transcriptome of native nasal epithelium expressing F508del-CFTR and intersecting data from comparable studies. Respiratory Research, 2013, 14, 38.	3.6	61
88	Postâ€ŧranslational modifications of <scp>CFTR</scp> : insight into protein trafficking and cystic fibrosis disease. FEBS Journal, 2013, 280, 4395-4395.	4.7	4
89	Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nature Genetics, 2013, 45, 1160-1167.	21.4	513
90	Revertants, Low Temperature, and Correctors Reveal the Mechanism of F508del-CFTR Rescue by VX-809 and Suggest Multiple Agents for Full Correction. Chemistry and Biology, 2013, 20, 943-955.	6.0	158

#	Article	IF	CITATIONS
91	High-Content siRNA Screen Reveals Global ENaC Regulators and Potential Cystic Fibrosis Therapy Targets. Cell, 2013, 154, 1390-1400.	28.9	50
92	CFTR mutations altering CFTR fragmentation. Biochemical Journal, 2013, 449, 295-305.	3.7	13
93	HGF Stimulation of Rac1 Signaling Enhances Pharmacological Correction of the Most Prevalent Cystic Fibrosis Mutant F508del-CFTR. ACS Chemical Biology, 2013, 8, 432-442.	3.4	59
94	Control of <scp>TMEM16A</scp> by <scp>INO</scp> â€4995 and other inositolphosphates. British Journal of Pharmacology, 2013, 168, 253-265.	5.4	37
95	Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the <scp>G</scp> olgi. FEBS Journal, 2013, 280, 4396-4406.	4.7	79
96	CFTR biomarkers: time for promotion to surrogate end-point. European Respiratory Journal, 2013, 41, 203-216.	6.7	93
97	Neuronal Reprograming of Protein Homeostasis by Calcium-Dependent Regulation of the Heat Shock Response. PLoS Genetics, 2013, 9, e1003711.	3.5	28
98	Rescuing Mutant CFTR: A Multi-task Approach to a Better Outcome in Treating Cystic Fibrosis. Current Pharmaceutical Design, 2013, 19, 3497-3508.	1.9	69
99	Impact of the cystic fibrosis mutation F508del-CFTR on renal cyst formation and growth. American Journal of Physiology - Renal Physiology, 2012, 303, F1176-F1186.	2.7	28
100	Measurements of CFTR-Mediated Clâ^' Secretion in Human Rectal Biopsies Constitute a Robust Biomarker for Cystic Fibrosis Diagnosis and Prognosis. PLoS ONE, 2012, 7, e47708.	2.5	52
101	Finding new medicines to fight CF: multiple steps of a success story. Orphanet Journal of Rare Diseases, 2012, 7, A19.	2.7	0
102	BAG-1 Stabilizes Mutant F508del-CFTR in a Ubiquitin-Like-Domain-Dependent Manner. Cellular Physiology and Biochemistry, 2012, 30, 1120-1133.	1.6	12
103	Regulation of ENaC biogenesis by the stress response protein SERP1. Pflugers Archiv European Journal of Physiology, 2012, 463, 819-827.	2.8	14
104	F508del-CFTR increases intracellular Ca2+ signaling that causes enhanced calcium-dependent Clâ^' conductance in cystic fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1385-1392.	3.8	32
105	New clinical diagnostic procedures for cystic fibrosis in Europe. Journal of Cystic Fibrosis, 2011, 10, S53-S66.	0.7	95
106	The K+ Channel Opener 1-EBIO Potentiates Residual Function of Mutant CFTR in Rectal Biopsies from Cystic Fibrosis Patients. PLoS ONE, 2011, 6, e24445.	2.5	43
107	Targeting CFTR: How to Treat Cystic Fibrosis by CFTR-Repairing Therapies. Current Drug Targets, 2011, 12, 683-693.	2.1	30
108	Contribution of Casein Kinase 2 and Spleen Tyrosine Kinase to CFTR Trafficking and Protein Kinase A-Induced Activity. Molecular and Cellular Biology, 2011, 31, 4392-4404.	2.3	39

#	Article	IF	CITATIONS
109	Effect of Annexin A5 on CFTR: regulated traffic or scaffolding?. Molecular Membrane Biology, 2011, 28, 14-29.	2.0	17
110	Antagonistic Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Cell Surface Expression by Protein Kinases WNK4 and Spleen Tyrosine Kinase. Molecular and Cellular Biology, 2011, 31, 4076-4086.	2.3	39
111	A Genetic Screening Strategy Identifies Novel Regulators of the Proteostasis Network. PLoS Genetics, 2011, 7, e1002438.	3.5	104
112	Introduction to Section III: Biochemical Methods to Study CFTR Protein. Methods in Molecular Biology, 2011, 741, 213-218.	0.9	1
113	Quantification of CFTR Transcripts. Methods in Molecular Biology, 2011, 741, 115-135.	0.9	6
114	Microarray mRNA Expression Profiling to Study Cystic Fibrosis. Methods in Molecular Biology, 2011, 742, 193-212.	0.9	11
115	Functional Genomics Assays to Study CFTR Traffic and ENaC Function. Methods in Molecular Biology, 2011, 742, 249-264.	0.9	19
116	Introduction to Section III: Resources for CFTR Research. Methods in Molecular Biology, 2011, 742, 281-283.	0.9	0
117	<i>Escherichia coli</i> -Cloned CFTR Loci Relevant for Human Artificial Chromosome Therapy. Human Gene Therapy, 2010, 21, 1077-1092.	2.7	23
118	Folding and Rescue of a Cystic Fibrosis Transmembrane Conductance Regulator Trafficking Mutant Identified Using Human-Murine Chimeric Proteins. Journal of Biological Chemistry, 2010, 285, 27033-27044.	3.4	6
119	Deletion of CFTR Translation Start Site Reveals Functional Isoforms of the Protein in CF Patients. Cellular Physiology and Biochemistry, 2009, 24, 335-346.	1.6	45
120	AMPK controls epithelial Na+ channels through Nedd4-2 and causes an epithelial phenotype when mutated. Pflugers Archiv European Journal of Physiology, 2009, 458, 713-721.	2.8	64
121	Deletion of Phe508 in the first nucleotideâ€binding domain of the cystic fibrosis transmembrane conductance regulator increases its affinity for the heat shock cognate 70 chaperone. FEBS Journal, 2009, 276, 7097-7109.	4.7	27
122	CFTR gene transfer to human cystic fibrosis pancreatic duct cells using a Sendai virus vector. Journal of Cellular Physiology, 2008, 214, 442-455.	4.1	35
123	Solubilizing Mutations Used to Crystallize One CFTR Domain Attenuate the Trafficking and Channel Defects Caused by the Major Cystic Fibrosis Mutation. Chemistry and Biology, 2008, 15, 62-69.	6.0	74
124	Prolonged treatment of cells with genistein modulates the expression and function of the cystic fibrosis transmembrane conductance regulator. British Journal of Pharmacology, 2008, 153, 1311-1323.	5.4	55
125	Regulation of the Epithelial Na+ Channel by the Protein Kinase CK2. Journal of Biological Chemistry, 2008, 283, 13225-13232.	3.4	38
126	An Extract from the Medicinal Plant Phyllanthus acidus and Its Isolated Compounds Induce Airway Chloride Secretion: A Potential Treatment for Cystic Fibrosis. Molecular Pharmacology, 2007, 71, 366-376.	2.3	46

#	Article	IF	CITATIONS
127	Neuronal signaling modulates protein homeostasis in <i>Caenorhabditis elegans</i> post-synaptic muscle cells. Genes and Development, 2007, 21, 3006-3016.	5.9	99
128	Chimeric constructs endow the human CFTR Cl channel with the gating behavior of murine CFTR. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16365-16370.	7.1	41
129	Molecular targeting of CFTR as a therapeutic approach to cystic fibrosis. Trends in Pharmacological Sciences, 2007, 28, 334-341.	8.7	133
130	Proteomic analysis of nasal cells from cystic fibrosis patients and non-cystic fibrosis control individuals: Search for novel biomarkers of cystic fibrosis lung disease. Proteomics, 2006, 6, 2314-2325.	2.2	70
131	Therapy through chaperones: Sense or antisense? Cystic fibrosis as a model disease. Journal of Inherited Metabolic Disease, 2006, 29, 477-487.	3.6	54
132	Human-Specific Cystic Fibrosis Transmembrane Conductance Regulator Antibodies DetectIn VivoGene Transfer to Ovine Airways. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 72-83.	2.9	11
133	Revertant mutants G550E and 4RK rescue cystic fibrosis mutants in the first nucleotide-binding domain of CFTR by different mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17891-17896.	7.1	112
134	Magnetic biosensors for genetic screening of cystic fibrosis. IET Circuits, Devices and Systems, 2005, 152, 393.	0.6	27
135	Detection of cystic fibrosis related DNA targets using AC field focusing of magnetic labels and spin-valve sensors. IEEE Transactions on Magnetics, 2005, 41, 4140-4142.	2.1	41
136	Magnetic field-assisted DNA hybridisation and simultaneous detection using micron-sized spin-valve sensors and magnetic nanoparticles. Sensors and Actuators B: Chemical, 2005, 107, 936-944.	7.8	93
137	The replication timing of CFTR and adjacent genes. Chromosome Research, 2005, 13, 183-194.	2.2	8
138	Processing of CFTR: Traversing the cellular maze-How much CFTR needs to go through to avoid cystic fibrosis?. Pediatric Pulmonology, 2005, 39, 479-491.	2.0	91
139	Bacterial transfer of large functional genomic DNA into human cells. Gene Therapy, 2005, 12, 1559-1572.	4.5	45
140	Establishment and Characterization of a Novel Polarized MDCK Epithelial Cellular Model for CFTR Studies. Cellular Physiology and Biochemistry, 2005, 16, 281-290.	1.6	15
141	Characterization of Novel Airway Submucosal Gland Cell Models for Cystic Fibrosis. Cellular Physiology and Biochemistry, 2005, 15, 251-262.	1.6	18
142	Rapid DNA hybridization based on ac field focusing of magnetically labeled target DNA. Applied Physics Letters, 2005, 87, 013901.	3.3	41
143	Most F508del-CFTR Is Targeted to Degradation at an Early Folding Checkpoint and Independently of Calnexin. Molecular and Cellular Biology, 2005, 25, 5242-5252.	2.3	166
144	Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. Journal of Cell Biology, 2004, 166, 815-825.	5.2	249

#	Article	IF	CITATIONS
145	CFTR Localization in Native Airway Cells and Cell Lines Expressing Wild-type or F508del-CFTR by a Panel of Different Antibodies. Journal of Histochemistry and Cytochemistry, 2004, 52, 193-203.	2.5	44
146	CFTR and Chaperones: Processing and Degradation. Journal of Molecular Neuroscience, 2004, 23, 041-048.	2.3	121
147	Assessment of CFTR function in native epithelia for the diagnosis of cystic fibrosis. Pediatric Pulmonology, 2004, 37, 243-243.	2.0	75
148	CFTR Clâ ^{~,} channel function in native human colon correlates with the genotype and phenotype in cystic fibrosis. Gastroenterology, 2004, 127, 1085-1095.	1.3	130
149	Analysis of genomic CFTR DNA. Journal of Cystic Fibrosis, 2004, 3, 7-10.	0.7	8
150	Methods for RNA extraction, cDNA preparation and analysis of CFTR transcripts. Journal of Cystic Fibrosis, 2004, 3, 11-15.	0.7	36
151	Non-PCR methods for the analysis of CFTR transcripts. Journal of Cystic Fibrosis, 2004, 3, 25-28.	0.7	3
152	Microarray analysis in cystic fibrosis. Journal of Cystic Fibrosis, 2004, 3, 29-33.	0.7	54
153	Immunohistochemistry of CFTR in native tissues and primary epithelial cell cultures. Journal of Cystic Fibrosis, 2004, 3, 37-41.	0.7	30
154	Assessment of CFTR localisation in native airway epithelial cells obtained by nasal brushing. Journal of Cystic Fibrosis, 2004, 3, 43-48.	0.7	34
155	General introduction to section C: Biochemistry and Biophysics of CFTR. Journal of Cystic Fibrosis, 2004, 3, 67.	0.7	185
156	Antibodies for CFTR studies. Journal of Cystic Fibrosis, 2004, 3, 69-72.	0.7	33
157	Biochemical methods to assess CFTR expression and membrane localization. Journal of Cystic Fibrosis, 2004, 3, 73-77.	0.7	49
158	Proteomics techniques for cystic fibrosis research. Journal of Cystic Fibrosis, 2004, 3, 85-89.	0.7	19
159	Quantitative methods for the analysis of CFTR transcripts/splicing variants. Journal of Cystic Fibrosis, 2004, 3, 17-23.	0.7	13
160	A comparison of 14 antibodies for the biochemical detection of the cystic fibrosis transmembrane conductance regulator protein. Molecular and Cellular Probes, 2004, 18, 235-242.	2.1	32
161	Unusually common cystic fibrosis mutation in Portugal encodes a misprocessed protein. Biochemical and Biophysical Research Communications, 2003, 311, 665-671.	2.1	25
162	Applicability of Different Antibodies for the Immunohistochemical Localization of CFTR In Respiratory and Intestinal Tissues of Human and Murine Origin. Journal of Histochemistry and Cytochemistry, 2003, 51, 1191-1199.	2.5	30

#	Article	IF	CITATIONS
163	Transcript analysis of the cystic fibrosis splicing mutation 1525-1G>A shows use of multiple alternative splicing sites and suggests a putative role of exonic splicing enhancers. Journal of Medical Genetics, 2003, 40, 88e-88.	3.2	37
164	The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70. Biochemical Journal, 2002, 366, 797-806.	3.7	114
165	Five Percent of Normal Cystic Fibrosis Transmembrane Conductance Regulator mRNA Ameliorates the Severity of Pulmonary Disease in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 619-627.	2.9	158
166	Crystallization and preliminary X-ray diffraction analysis of proteinL-isoaspartylO-methyltransferase from wheat germ. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 304-305.	2.5	2
167	Cystic fibrosis patients with the 3272-26A>G splicing mutation have milder disease than F508del homozygotes: a large European study. Journal of Medical Genetics, 2001, 38, 777-783.	3.2	30
168	Cystic Fibrosis F508del Patients Have Apically Localized CFTR in a Reduced Number of Airway Cells. Laboratory Investigation, 2000, 80, 857-868.	3.7	93
169	Cystic fibrosis patients with the 3272-26A?G mutation have mild disease, leaky alternative mRNA splicing, and CFTR protein at the cell membrane. Human Mutation, 1999, 14, 133-144.	2.5	59
170	Cystic fibrosis patients with the 3272-26A→G mutation have mild disease, leaky alternative mRNA splicing, and CFTR protein at the cell membrane. Human Mutation, 1999, 14, 133.	2.5	3
171	Complex cystic fibrosis allele R334W-R1158X results in reduced levels of correctly processed mRNA in a pancreatic sufficient patient. , 1996, 8, 134-139.		25
172	Heat-shock-induced protein synthesis is responsible for the switch-off of hsp70 transcription in Tetrahymena. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1174, 133-142.	2.4	9
173	Stress response of Tetrahymena pyriformis to arsenite and heat shock: Differences and similarities. FEBS Journal, 1988, 171, 463-470.	0.2	28