
Manfred Lenzen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2791491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The material footprint of nations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6271-6276.	3.3	1,114
2	BUILDING EORA: A GLOBAL MULTI-REGION INPUT–OUTPUT DATABASE AT HIGH COUNTRY AND SECTOR RESOLUTION. Economic Systems Research, 2013, 25, 20-49.	1.2	991
3	International trade drives biodiversity threats in developing nations. Nature, 2012, 486, 109-112.	13.7	906
4	System Boundary Selection in Life-Cycle Inventories Using Hybrid Approaches. Environmental Science & Technology, 2004, 38, 657-664.	4.6	876
5	The carbon footprint of global tourism. Nature Climate Change, 2018, 8, 522-528.	8.1	828
6	Mapping the Structure of the World Economy. Environmental Science & Technology, 2012, 46, 8374-8381.	4.6	740
7	Errors in Conventional and Input-Output—based Life—Cycle Inventories. Journal of Industrial Ecology, 2000, 4, 127-148.	2.8	561
8	Environmental and social footprints of international trade. Nature Geoscience, 2018, 11, 314-321.	5.4	553
9	Examining the global environmental impact of regional consumption activities — Part 2: Review of input–output models for the assessment of environmental impacts embodied in trade. Ecological Economics, 2007, 61, 15-26.	2.9	541
10	Shared producer and consumer responsibility — Theory and practice. Ecological Economics, 2007, 61, 27-42.	2.9	505
11	Scientists' warning on affluence. Nature Communications, 2020, 11, 3107.	5.8	503
12	Risk of pesticide pollution at the global scale. Nature Geoscience, 2021, 14, 206-210.	5.4	451
13	INPUT–OUTPUT ANALYSIS AND CARBON FOOTPRINTING: AN OVERVIEW OF APPLICATIONS. Economic Systems Research, 2009, 21, 187-216.	1.2	436
14	Primary energy and greenhouse gases embodied in Australian final consumption: an input–output analysis. Energy Policy, 1998, 26, 495-506.	4.2	400
15	Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions. Journal of Cleaner Production, 2016, 132, 45-56.	4.6	382
16	CO2Multipliers in Multi-region Input-Output Models. Economic Systems Research, 2004, 16, 391-412.	1.2	364
17	International trade of scarce water. Ecological Economics, 2013, 94, 78-85.	2.9	363
18	A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan. Energy, 2006, 31, 181-207.	4.5	354

#	Article	IF	CITATIONS
19	A modified ecological footprint method and its application to Australia. Ecological Economics, 2001, 37, 229-255.	2.9	347
20	Life cycle energy and greenhouse gas emissions of nuclear energy: A review. Energy Conversion and Management, 2008, 49, 2178-2199.	4.4	335
21	The environmental footprint of health care: a global assessment. Lancet Planetary Health, The, 2020, 4, e271-e279.	5.1	316
22	Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input–output analysis. Ecological Economics, 2011, 70, 1937-1945.	2.9	299
23	The carbon footprint of Australian health care. Lancet Planetary Health, The, 2018, 2, e27-e35.	5.1	298
24	Substantial nitrogen pollution embedded in international trade. Nature Geoscience, 2016, 9, 111-115.	5.4	288
25	International trade undermines national emission reduction targets: New evidence from air pollution. Global Environmental Change, 2014, 24, 52-59.	3.6	269
26	Consumption-based GHG emission accounting: a UK case study. Climate Policy, 2013, 13, 451-470.	2.6	268
27	Energy and CO2 life-cycle analyses of wind turbines—review and applications. Renewable Energy, 2002, 26, 339-362.	4.3	256
28	A CARBON FOOTPRINT TIME SERIES OF THE UK – RESULTS FROM A MULTI-REGION INPUT–OUTPUT MODEL. Economic Systems Research, 2010, 22, 19-42.	1.2	253
29	AGGREGATION VERSUS DISAGGREGATION IN INPUT–OUTPUT ANALYSIS OF THE ENVIRONMENT. Economic Systems Research, 2011, 23, 73-89.	1.2	251
30	Energy requirements of Sydney households. Ecological Economics, 2004, 49, 375-399.	2.9	247
31	A research agenda for improving national Ecological Footprint accounts. Ecological Economics, 2009, 68, 1991-2007.	2.9	239
32	UNCERTAINTY ANALYSIS FOR MULTI-REGION INPUT–OUTPUT MODELS – A CASE STUDY OF THE UK'S CARBO FOOTPRINT. Economic Systems Research, 2010, 22, 43-63.	N 1.2	237
33	Application of Hybrid Life Cycle Approaches to Emerging Energy Technologies – The Case of Wind Power in the UK. Environmental Science & Technology, 2011, 45, 5900-5907.	4.6	234
34	Global Material Flows and Resource Productivity: Forty Years of Evidence. Journal of Industrial Ecology, 2018, 22, 827-838.	2.8	232
35	Global socio-economic losses and environmental gains from the Coronavirus pandemic. PLoS ONE, 2020, 15, e0235654.	1.1	218
36	A structural decomposition analysis of global energy footprints. Applied Energy, 2016, 163, 436-451.	5.1	216

#	Article	IF	CITATIONS
37	Examining the global environmental impact of regional consumption activities — Part 1: A technical note on combining input–output and ecological footprint analysis. Ecological Economics, 2007, 62, 37-44.	2.9	214
38	Environmentally important paths, linkages and key sectors in the Australian economy. Structural Change and Economic Dynamics, 2003, 14, 1-34.	2.1	210
39	A consistent input–output formulation of shared producer and consumer responsibility. Economic Systems Research, 2005, 17, 365-391.	1.2	203
40	Frameworks for Comparing Emissions Associated with Production, Consumption, And International Trade. Environmental Science & Technology, 2012, 46, 172-179.	4.6	189
41	Income-based environmental responsibility. Ecological Economics, 2012, 84, 57-65.	2.9	181
42	How City Dwellers Affect Their Resource Hinterland. Journal of Industrial Ecology, 2010, 14, 73-90.	2.8	172
43	Effects of Household Consumption Patterns on CO2Requirements. Economic Systems Research, 2001, 13, 259-274.	1.2	166
44	A comparative study of some environmental impacts of conventional and organic farming in Australia. Agricultural Systems, 2006, 89, 324-348.	3.2	165
45	Structural path analysis of ecosystem networks. Ecological Modelling, 2007, 200, 334-342.	1.2	163
46	Energy requirements of households in Brazil. Energy Policy, 2005, 33, 555-562.	4.2	156
47	Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications. Energy Policy, 2013, 63, 696-707.	4.2	155
48	1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nature Communications, 2021, 12, 2676.	5.8	154
49	THE ROLE OF INPUT–OUTPUT ANALYSIS FOR THE SCREENING OF CORPORATE CARBON FOOTPRINTS. Economic Systems Research, 2009, 21, 217-242.	1.2	152
50	Compiling and using input–output frameworks through collaborative virtual laboratories. Science of the Total Environment, 2014, 485-486, 241-251.	3.9	151
51	Companies on the Scale. Journal of Industrial Ecology, 2009, 13, 361-383.	2.8	147
52	Structural decomposition of energy use in Brazil from 1970 to 1996. Applied Energy, 2009, 86, 578-587.	5.1	144
53	A guide for compiling inventories in hybrid life-cycle assessments: some Australian results. Journal of Cleaner Production, 2002, 10, 545-572.	4.6	143
54	Embodied energy in buildings: wood versus concrete—reply to Börjesson and Gustavsson. Energy Policy, 2002, 30, 249-255.	4.2	143

#	Article	IF	CITATIONS
55	Integrating sustainable chain management with triple bottom line accounting. Ecological Economics, 2005, 52, 143-157.	2.9	142
56	The Path Exchange Method for Hybrid LCA. Environmental Science & Technology, 2009, 43, 8251-8256.	4.6	140
57	A Generalized Input-Output Multiplier Calculus for Australia. Economic Systems Research, 2001, 13, 65-92.	1.2	137
58	EFFECTS OF SECTOR AGGREGATION ON CO ₂ MULTIPLIERS IN MULTIREGIONAL INPUT–OUTPUT ANALYSES. Economic Systems Research, 2014, 26, 284-302.	1.2	127
59	Does ecologically unequal exchange occur?. Ecological Economics, 2013, 89, 177-186.	2.9	126
60	Conceptualising environmental responsibility. Ecological Economics, 2010, 70, 261-270.	2.9	124
61	Using Input-Output Analysis to Measure the Environmental Pressure of Consumption at Different Spatial Levels. Journal of Industrial Ecology, 2008, 9, 169-185.	2.8	122
62	Mercury Flows in China and Global Drivers. Environmental Science & amp; Technology, 2017, 51, 222-231.	4.6	121
63	Structural path decomposition. Energy Economics, 2009, 31, 335-341.	5.6	120
64	A STRUCTURAL DECOMPOSITION APPROACH TO COMPARING MRIO DATABASES. Economic Systems Research, 2014, 26, 262-283.	1.2	120
65	Environmental impact assessment including indirect effects—a case study using input–output analysis. Environmental Impact Assessment Review, 2003, 23, 263-282.	4.4	117
66	Truncation error in embodied energy analyses of basic iron and steel products. Energy, 2000, 25, 577-585.	4.5	116
67	An input–output analysis of Australian water usage. Water Policy, 2001, 3, 321-340.	0.7	114
68	Error propagation methods for LCA—a comparison. International Journal of Life Cycle Assessment, 2014, 19, 1445-1461.	2.2	110
69	Wind turbines in Brazil and Germany: an example of geographical variability in life-cycle assessment. Applied Energy, 2004, 77, 119-130.	5.1	107
70	MATRIX BALANCING UNDER CONFLICTING INFORMATION. Economic Systems Research, 2009, 21, 23-44.	1.2	106
71	The Employment Footprints of Nations. Journal of Industrial Ecology, 2014, 18, 59-70.	2.8	105
72	Understanding virtual water flows: A multiregion inputâ€output case study of Victoria. Water Resources Research, 2009, 45, .	1.7	104

#	Article	IF	CITATIONS
73	THE INS AND OUTS OF WATER USE – A REVIEW OF MULTI-REGION INPUT–OUTPUT ANALYSIS AND WATER FOOTPRINTS FOR REGIONAL SUSTAINABILITY ANALYSIS AND POLICY. Economic Systems Research, 2011, 23, 353-370.	1.2	103
74	Trends in Global Greenhouse Gas Emissions from 1990 to 2010. Environmental Science & Technology, 2016, 50, 4722-4730.	4.6	100
75	Economic, energy and greenhouse emissions impacts of some consumer choice, technology and government outlay options. Energy Economics, 2002, 24, 377-403.	5.6	98
76	Urban Energy Systems. , 0, , 1307-1400.		98
77	Current State of Development of Electricity-Generating Technologies: A Literature Review. Energies, 2010, 3, 462-591.	1.6	97
78	Urgent need for post-growth climate mitigation scenarios. Nature Energy, 2021, 6, 766-768.	19.8	97
79	Total requirements of energy and greenhouse gases for Australian transport. Transportation Research, Part D: Transport and Environment, 1999, 4, 265-290.	3.2	91
80	Hybrid input–output life cycle assessment of warm mix asphalt mixtures. Journal of Cleaner Production, 2015, 90, 171-182.	4.6	91
81	Subsidies for electricity-generating technologies: A review. Energy Policy, 2010, 38, 5038-5047.	4.2	90
82	Energy and greenhouse gas cost of living for Australia during 1993/94. Energy, 1998, 23, 497-516.	4.5	88
83	Zero-value problems of the logarithmic mean divisia index decomposition method. Energy Policy, 2006, 34, 1326-1331.	4.2	88
84	Evaluating the environmental performance of a university. Journal of Cleaner Production, 2010, 18, 1134-1141.	4.6	88
85	Hybrid life cycle assessment (LCA) will likely yield more accurate results than process-based LCA. Journal of Cleaner Production, 2018, 176, 210-215.	4.6	87
86	Consumption-based greenhouse gas emissions accounting with capital stock change highlights dynamics of fast-developing countries. Nature Communications, 2018, 9, 3581.	5.8	87
87	The need to decelerate fast fashion in a hot climate - A global sustainability perspective on the garment industry. Journal of Cleaner Production, 2021, 295, 126390.	4.6	85
88	INPUT–OUTPUT ANALYSIS: THE NEXT 25 YEARS. Economic Systems Research, 2013, 25, 369-389.	1.2	84
89	The impact of battery energy storage for renewable energy power grids in Australia. Energy, 2019, 173, 647-657.	4.5	84
90	Simulating low-carbon electricity supply for Australia. Applied Energy, 2016, 179, 553-564.	5.1	83

#	Article	IF	CITATIONS
91	Global food-miles account for nearly 20% of total food-systems emissions. Nature Food, 2022, 3, 445-453.	6.2	77
92	On the conversion between local and global hectares in Ecological Footprint analysis. Ecological Economics, 2007, 60, 673-677.	2.9	76
93	Structural analyses of energy use and carbon emissions – an overview. Economic Systems Research, 2016, 28, 119-132.	1.2	75
94	The Global MRIO Lab $\hat{a} \in \hat{~}$ charting the world economy. Economic Systems Research, 2017, 29, 158-186.	1.2	74
95	Constructing a Time Series of Nested Multiregion Input–Output Tables. International Regional Science Review, 2017, 40, 476-499.	1.0	70
96	Assessing carbon footprints of cities under limited information. Journal of Cleaner Production, 2018, 176, 1254-1270.	4.6	70
97	Advancements in Inputâ€Output Models and Indicators for Consumptionâ€Based Accounting. Journal of Industrial Ecology, 2019, 23, 300-312.	2.8	70
98	Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nature Sustainability, 2022, 5, 157-166.	11.5	69
99	Some Comments on the GRAS Method. Economic Systems Research, 2007, 19, 461-465.	1.2	66
100	GREENHOUSE GAS ANALYSIS OF SOLAR-THERMAL ELECTRICITY GENERATION. Solar Energy, 1999, 65, 353-368.	2.9	65
101	An Application of a Modified Ecological Footprint Method and Structural Path Analysis in a Comparative Institutional Study. Local Environment, 2003, 8, 365-386.	1.1	64
102	Water accounting in Australia. Ecological Economics, 2007, 61, 650-659.	2.9	64
103	Comparison of household consumption and regional production approaches to assess urban energy use and implications for policy. Energy Policy, 2011, 39, 7298-7309.	4.2	64
104	Hybrid life-cycle assessment of algal biofuel production. Bioresource Technology, 2015, 184, 436-443.	4.8	64
105	Threeâ€scope carbon emission inventories of global cities. Journal of Industrial Ecology, 2021, 25, 735-750.	2.8	63
106	Using a new USA multi-region input output (MRIO) model for assessing economic and energy impacts of wind energy expansion in USA. Applied Energy, 2020, 261, 114141.	5.1	62
107	The carbon footprint of desalination. Desalination, 2019, 454, 71-81.	4.0	61
108	Double ounting in Life Cycle Calculations. Journal of Industrial Ecology, 2008, 12, 583-599.	2.8	60

#	Article	IF	CITATIONS
109	Renewable Energy in the Context of Sustainable Development. , 2011, , 707-790.		59
110	New multi-regional input–output databases for Australia – enabling timely and flexible regional analysis. Economic Systems Research, 2017, 29, 275-295.	1.2	59
111	Simulating the impact of new industries on the economy: The case of biorefining in Australia. Ecological Economics, 2014, 107, 84-93.	2.9	58
112	A Material History of Australia. Journal of Industrial Ecology, 2009, 13, 847-862.	2.8	57
113	How severe space weather can disrupt global supply chains. Natural Hazards and Earth System Sciences, 2014, 14, 2749-2759.	1.5	57
114	A hybrid method for quantifying China's nitrogen footprint during urbanisation from 1990 to 2009. Environment International, 2016, 97, 137-145.	4.8	56
115	Differential Convergence of Life-Cycle Inventories toward Upstream Production Layers Journal of Industrial Ecology, 2002, 6, 137-160.	2.8	55
116	Assessing the Ecological Footprint of a Large Metropolitan Water Supplier: Lessons for Water Management and Planning towards Sustainability. Journal of Environmental Planning and Management, 2003, 46, 113-141.	2.4	53
117	On the bioproductivity and land-disturbance metrics of the Ecological Footprint. Ecological Economics, 2007, 61, 6-10.	2.9	53
118	Decomposition analysis and the mean-rate-of-change index. Applied Energy, 2006, 83, 185-198.	5.1	52
119	A Supplyâ€Use Approach to Waste Inputâ€Output Analysis. Journal of Industrial Ecology, 2014, 18, 212-226.	2.8	52
120	Global consumption and international trade in deforestation-associated commodities could influence malaria risk. Nature Communications, 2020, 11, 1258.	5.8	50
121	Uncertainty in Impact and Externality Assessments - Implications for Decision-Making (13 pp). International Journal of Life Cycle Assessment, 2006, 11, 189-199.	2.2	47
122	The Inequality Footprints of Nations: A Novel Approach to Quantitative Accounting of Income Inequality. PLoS ONE, 2014, 9, e110881.	1.1	47
123	Labour forced impacts and production losses due to the 2013 flood in Germany. Journal of Hydrology, 2015, 527, 142-150.	2.3	46
124	Global Supply Chains of Coltan. Journal of Industrial Ecology, 2015, 19, 357-365.	2.8	46
125	Consumption-based material flow indicators — Comparing six ways of calculating the Austrian raw material consumption providing six results. Ecological Economics, 2016, 128, 177-186.	2.9	46
126	How Social Footprints of Nations Can Assist in Achieving the Sustainable Development Goals. Ecological Economics, 2017, 135, 55-65.	2.9	45

#	Article	IF	CITATIONS
127	Effects of Land Use on Threatened Species. Conservation Biology, 2009, 23, 294-306.	2.4	43
128	Triple bottom line study of a lignocellulosic biofuel industry. GCB Bioenergy, 2016, 8, 96-110.	2.5	43
129	Accounting for value added embodied in trade and consumption: an intercomparison of global multiregional input–output databases. Economic Systems Research, 2016, 28, 78-94.	1.2	42
130	Economic damage and spillovers from a tropical cyclone. Natural Hazards and Earth System Sciences, 2019, 19, 137-151.	1.5	42
131	Influence of trade on national CO _{2 emissions. International Journal of Global Energy Issues, 2005, 23, 324.}	0.2	41
132	The social, economic, and environmental implications of biomass ethanol production in China: A multi-regional input-output-based hybrid LCA model. Journal of Cleaner Production, 2020, 249, 119326.	4.6	39
133	An Australian Multiâ€Regional Waste Supplyâ€Use Framework. Journal of Industrial Ecology, 2016, 20, 1295-1305.	2.8	37
134	A new sub-national multi-region input–output database for Indonesia. Economic Systems Research, 2017, 29, 234-251.	1.2	36
135	GIS-Based Probabilistic Modeling of BEV Charging Load for Australia. IEEE Transactions on Smart Grid, 2019, 10, 3525-3534.	6.2	36
136	Affluent countries inflict inequitable mortality and economic loss on Asia via PM2.5 emissions. Environment International, 2020, 134, 105238.	4.8	36
137	Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually. Nature Communications, 2021, 12, 6286.	5.8	36
138	Tourism, job vulnerability and income inequality during the COVID-19 pandemic: A global perspective. Annals of Tourism Research Empirical Insights, 2022, 3, 100046.	1.7	35
139	To RAS or not to RAS? What is the difference in outcomes in multi-regional input–output models?. Economic Systems Research, 2016, 28, 383-402.	1.2	34
140	Aggregation (in-)variance of shared responsibility: A case study of Australia. Ecological Economics, 2007, 64, 19-24.	2.9	32
141	Happiness versus the Environment—A Case Study of Australian Lifestyles. Challenges, 2013, 4, 56-74.	0.9	32
142	INVESTIGATING ALTERNATIVE APPROACHES TO HARMONISE MULTI-REGIONAL INPUT–OUTPUT DATA. Economic Systems Research, 2014, 26, 354-385.	1.2	32
143	Trade in occupational safety and health: Tracing the embodied human and economic harm in labour along the global supply chain. Journal of Cleaner Production, 2017, 147, 187-196.	4.6	32
144	Electricity generation and demand flexibility in wastewater treatment plants: Benefits for 100% renewable electricity grids. Applied Energy, 2020, 268, 114960.	5.1	32

#	Article	IF	CITATIONS
145	Historical accountability and cumulative impacts: the treatment of time in corporate sustainability reporting. Ecological Economics, 2004, 51, 237-250.	2.9	31
146	Consumer and producer environmental responsibility: A reply. Ecological Economics, 2008, 66, 547-550.	2.9	30
147	Long-term field tests of vacuum glazing. Solar Energy, 1997, 61, 11-15.	2.9	29
148	A practical approach for estimating weights of interacting criteria from profile sets. Fuzzy Sets and Systems, 2015, 272, 70-88.	1.6	29
149	Sustainable island businesses: a case study of Norfolk Island. Journal of Cleaner Production, 2008, 16, 2018-2035.	4.6	28
150	The roles of biomass and CSP in a 100 % renewable electricity supply in Australia. Biomass and Bioenergy, 2020, 143, 105802.	2.9	28
151	Drivers of change in Brazil's carbon dioxide emissions. Climatic Change, 2013, 121, 815-824.	1.7	27
152	Socioeconomic Drivers of Global Blue Water Use. Water Resources Research, 2019, 55, 5650-5664.	1.7	27
153	The potential for indoor fans to change air conditioning use while maintaining human thermal comfort during hot weather: an analysis of energy demand and associated greenhouse gas emissions. Lancet Planetary Health, The, 2022, 6, e301-e309.	5.1	27
154	The national tourism carbon emission inventory: its importance, applications and allocation frameworks. Journal of Sustainable Tourism, 2019, 27, 360-379.	5.7	26
155	Energy descent as a post-carbon transition scenario: How â€~knowledge humility' reshapes energy futures for post-normal times. Futures, 2020, 122, 102565.	1.4	26
156	CIS-based modelling of electric-vehicle–grid integration in a 100% renewable electricity grid. Applied Energy, 2020, 262, 114577.	5.1	26
157	Managing sustainability using financial accounting data: The value of input-output analysis. Journal of Cleaner Production, 2021, 293, 126128.	4.6	26
158	A flexible multiregional input–output database for city-level sustainability footprint analysis in Japan. Resources, Conservation and Recycling, 2020, 154, 104588.	5.3	25
159	Aggregate Measures of Complex Economic Structure and Evolution. Journal of Industrial Ecology, 2009, 13, 264-283.	2.8	24
160	International trade linked with disease burden from airborne particulate pollution. Resources, Conservation and Recycling, 2018, 129, 1-11.	5.3	24
161	International spillover effects in the EU's textile supply chains: A global SDG assessment. Journal of Environmental Management, 2021, 295, 113037.	3.8	24
162	Dealing with double-counting in tiered hybrid life-cycle inventories: a few comments. Journal of Cleaner Production, 2009, 17, 1382-1384.	4.6	23

#	Article	IF	CITATIONS
163	An Outlook into a Possible Future of Footprint Research. Journal of Industrial Ecology, 2014, 18, 4-6.	2.8	23
164	Consuming Childhoods: An Assessment of Child Labor's Role in Indian Production and Global Consumption. Journal of Industrial Ecology, 2016, 20, 611-622.	2.8	23
165	The Corruption Footprints of Nations. Journal of Industrial Ecology, 2018, 22, 68-78.	2.8	23
166	A disaggregated emissions inventory for Taiwan with uses in hybrid inputâ€output life cycle analysis (IOâ€LCA). Natural Resources Forum, 2012, 36, 123-141.	1.8	22
167	Environmental and Social Accounting for Brazil. Environmental and Resource Economics, 2004, 27, 201-226.	1.5	21
168	Hidden Energy Flow indicator to reflect the outsourced energy requirements of countries. Journal of Cleaner Production, 2021, 278, 123827.	4.6	21
169	Reducing the ecological footprint of urban cars. International Journal of Sustainable Transportation, 2018, 12, 117-127.	2.1	20
170	Reply to Schandl etÂal., 2016, JCLEPRO and Hatfield-Dodds etÂal., 2015, Nature: How challenging is decoupling for Australia?. Journal of Cleaner Production, 2016, 139, 796-798.	4.6	19
171	The Australian industrial ecology virtual laboratory and multi-scale assessment of buildings and construction. Energy and Buildings, 2018, 164, 14-20.	3.1	19
172	Triple-bottom-line assessment of São Paulo state's sugarcane production based on a Brazilian multi-regional input-output matrix. Renewable and Sustainable Energy Reviews, 2018, 82, 666-680.	8.2	19
173	Direct versus Embodied Energy – The Need for Urban Lifestyle Transitions. , 2008, , 91-120.		18
174	Shifting airâ€conditioner load in residential buildings: benefits for lowâ€carbon integrated power grids. IET Renewable Power Generation, 2018, 12, 1314-1323.	1.7	18
175	Thailand's energy-related carbon dioxide emissions from production-based and consumption-based perspectives. Energy Policy, 2019, 133, 110877.	4.2	18
176	Responsibility for food loss from a regional supply-chain perspective. Resources, Conservation and Recycling, 2019, 146, 373-383.	5.3	18
177	Optimizing 100%â€renewable grids through shifting residential waterâ€heater load. International Journal of Energy Research, 2019, 43, 1479-1493.	2.2	18
178	A NON-SIGN-PRESERVING RAS VARIANT. Economic Systems Research, 2014, 26, 197-208.	1.2	17
179	Consequences of long-term infrastructure decisions—the case of self-healing roads and their CO ₂ emissions. Environmental Research Letters, 2019, 14, 114040.	2.2	17
180	How many electric vehicles can the current Australian electricity grid support?. International Journal of Electrical Power and Energy Systems, 2020, 117, 105586.	3.3	17

#	Article	IF	CITATIONS
181	A CYCLING METHOD FOR CONSTRUCTING INPUT–OUTPUT TABLE TIME SERIES FROM INCOMPLETE DATA. Economic Systems Research, 2012, 24, 413-432.	1.2	16
182	A flexible adaptation of the WIOD database in a virtual laboratory. Economic Systems Research, 2017, 29, 187-208.	1.2	16
183	Understanding New Zealand's consumption-based greenhouse gas emissions: an application of multi-regional input-output analysis. International Journal of Life Cycle Assessment, 2020, 25, 1323-1332.	2.2	16
184	Material footprints of Chinese megacities. Resources, Conservation and Recycling, 2021, 174, 105758.	5.3	16
185	How long can global ecological overshoot last?. Global and Planetary Change, 2017, 155, 13-19.	1.6	15
186	Selecting and assessing sustainable CDM projects using multi-criteria methods. Climate Policy, 2007, 7, 121-138.	2.6	14
187	INPUT–OUTPUT ANALYSIS FOR BUSINESS PLANNING: A CASE STUDY OF THE UNIVERSITY OF SYDNEY. Economic Systems Research, 2010, 22, 155-179.	1.2	14
188	Structural Change and the Environment. Journal of Industrial Ecology, 2012, 16, 623-635.	2.8	14
189	Using virtual laboratories for disaster analysis – a case study of Taiwan. Economic Systems Research, 2020, 32, 58-83.	1.2	14
190	Environmental impacts of Australia's largest health system. Resources, Conservation and Recycling, 2021, 169, 105556.	5.3	14
191	Lifestyles and Well-Being Versus the Environment. Journal of Industrial Ecology, 2011, 15, 650-652.	2.8	13
192	Modelling Interactions Between Economic Activity, Greenhouse Gas Emissions, Biodiversity and Agricultural Production. Environmental Modeling and Assessment, 2013, 18, 377-416.	1.2	13
193	Performance of concentrating solar power plants in a whole-of-grid context. Renewable and Sustainable Energy Reviews, 2019, 114, 109342.	8.2	13
194	CO ₂ emissions embodied in China's export. Journal of International Trade and Economic Development, 2019, 28, 919-934.	1.2	13
195	Estimating Generalized Regional Input–Output Systems: A Case Study of Australia. , 2009, , .		13
196	Impacts of harmful algal blooms on marine aquaculture in a low-carbon future. Harmful Algae, 2021, 110, 102143.	2.2	13
197	Drivers of global nitrogen emissions. Environmental Research Letters, 2022, 17, 015006.	2.2	13
198	Using Input-Output Analysis to Measure Healthy, Sustainable Food Systems. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	12

#	Article	IF	CITATIONS
199	A Personal Approach to Teaching about Climate Change. Australian Journal of Environmental Education, 2002, 18, 35-45.	1.4	11
200	Constructing enterprise input-output tables - a case study of New Zealand dairy products. Journal of Economic Structures, 2012, 1, .	0.6	11
201	A supply-use approach to capital endogenization in input–output analysis. Economic Systems Research, 2020, 32, 451-475.	1.2	11
202	A Novel Method for Estimating Emissions Reductions Caused by the Restriction of Mobility: The Case of the COVID-19 Pandemic. Environmental Science and Technology Letters, 2021, 8, 46-52.	3.9	11
203	Cultural and socioâ€economic determinants of energy consumption on small remote islands. Natural Resources Forum, 2014, 38, 27-46.	1.8	10
204	Drivers and benefits of shared demand-side battery storage – an Australian case study. Energy Policy, 2021, 149, 112005.	4.2	10
205	Building Robust Housing Sector Policy Using the Ecological Footprint. Resources, 2018, 7, 24.	1.6	9
206	Setting Better-Informed Climate Targets for New Zealand: The Influence of Value and Modeling Choices. Environmental Science & Technology, 2020, 54, 4515-4527.	4.6	9
207	Creating multiâ€scale nested MRIO tables for linking localized impacts to global consumption drivers. Journal of Industrial Ecology, 2022, 26, 281-293.	2.8	9
208	Supply-chain impacts of Sichuan earthquake: a case study using disaster input–output analysis. Natural Hazards, 2022, 110, 2227-2248.	1.6	9
209	Carbon spillover and feedback effects of the middle class in China. Journal of Cleaner Production, 2021, 329, 129738.	4.6	9
210	Degrowth scenarios for emissions neutrality. Nature Food, 2022, 3, 308-309.	6.2	9
211	Teaching Responsibility for Climate Change: Three Neglected Issues. Australian Journal of Environmental Education, 1999, 15, 65-75.	1.4	8
212	INTERRELATIONAL INCOME DISTRIBUTION IN BRAZIL. Developing Economies, 2004, 42, 371-391.	0.5	8
213	Clobal Warming Effect of Leakage From CO ₂ Storage. Critical Reviews in Environmental Science and Technology, 2011, 41, 2169-2185.	6.6	8
214	Historical and potential future contributions of power technologies to global warming. Climatic Change, 2012, 112, 601-632.	1.7	8
215	Renewable-powered desalination as an optimisation pathway for renewable energy systems: the case of Australia's Murray–Darling Basin. Environmental Research Letters, 2019, 14, 124054.	2.2	8
216	An integrated combined power and cooling strategy for small islands. Journal of Cleaner Production, 2020, 276, 122840.	4.6	8

#	Article	IF	CITATIONS
217	The Importance of Goods and Services Consumption in Household Greenhouse Gas Calculators. Ambio, 2001, 30, 439-442.	2.8	7
218	Method of measuring depth profile of hydrogen in soda-lime glass. Journal of Non-Crystalline Solids, 2005, 351, 317-322.	1.5	7
219	Balancing and reconciling large multi-regional input–output databases using parallel optimisation and high-performance computing. Journal of Economic Structures, 2019, 8, .	0.6	7
220	Unravelling the Impacts of Supply Chains—A New Triple-Bottom-Line Accounting Approach and Software Tool. Eco-efficiency in Industry and Science, 2008, , 65-90.	0.1	7
221	Selecting and assessing sustainable CDM projects using multi-criteria methods. Climate Policy, 2007, 7, 121-138.	2.6	7
222	The PIOLab: Building global physical input–output tables in a virtual laboratory. Journal of Industrial Ecology, 2022, 26, 683-703.	2.8	7
223	Aggregating input–output systems with minimum error. Economic Systems Research, 2019, 31, 594-616.	1.2	6
224	Sustainable development opportunities in small island nations: A case study of the Cook Islands. Journal of Cleaner Production, 2020, 277, 123045.	4.6	6
225	Nutrient-sensitive approach for sustainability assessment of different dietary patterns in Australia. American Journal of Clinical Nutrition, 2022, 115, 1048-1058.	2.2	6
226	Transport Energy Embodied in Consumer Goods: A Hybrid Life-Cycle Analysis. Energy and Environment, 2005, 16, 283-301.	2.7	5
227	Using tensor calculus for scenario modelling. Environmental Modelling and Software, 2012, 37, 41-54.	1.9	5
228	Desalination and sustainability: a triple bottom line study of Australia. Environmental Research Letters, 2020, 15, 114044.	2.2	5
229	Assessment of two optimisation methods for renewable energy capacity expansion planning. Applied Energy, 2022, 306, 117988.	5.1	5
230	Environmental benefits of material-efficient design: A hybrid life cycle assessment of a plastic milk bottle. Sustainable Production and Consumption, 2022, 30, 1044-1052.	5.7	5
231	Bioenergy siting for low-carbon electricity supply in Australia. Biomass and Bioenergy, 2022, 163, 106496.	2.9	5
232	Skills and ethnics wage inequalities within the global value chain: an evidence from Malaysia. Policy Studies, 2022, 43, 56-75.	1.1	4
233	Forest Tax Payment Responsibility from the Forest Service Footprint Perspective. Environmental Science & Technology, 2021, 55, 3165-3174.	4.6	4
234	Automatically Estimating and Updating Input-Output Tables. Lecture Notes in Computer Science, 2009, , 42-49.	1.0	4

#	Article	IF	CITATIONS
235	Scenario modelling of biomass usage in the Australian electricity grid. Resources, Conservation and Recycling, 2022, 180, 106198.	5.3	4
236	Response to Hornborg et al Ecological Economics, 2015, 119, 419.	2.9	3
237	The Social Footprints of Global Trade. Environmental Footprints and Eco-design of Products and Processes, 2017, , .	0.7	3
238	Integrating Input-Output Modeling with Multi-criteria Analysis to Assess Options for Sustainable Economic Transformation: The Case of Uzbekistan. , 2014, , 229-245.		3
239	Re-Examining Climate Policies for Pathways to a Zero Carbon Future. Environmental Science & Technology, 2021, 55, 1-3.	4.6	3
240	Future Transitions to a Renewable Stationary Energy Sector: Implications of the Future Ecological Footprint and Land Use. , 2021, , 155-178.		3
241	Are We Missing the Opportunity of Low-Carbon Lifestyles? International Climate Policy Commitments and Demand-Side Gaps. Sustainability, 2021, 13, 12760.	1.6	3
242	Carbon Emissions of the Tourism Telecoupling System: Theoretical Framework, Model Specification and Synthesis Effects. International Journal of Environmental Research and Public Health, 2022, 19, 5984.	1.2	3
243	Transport Energy Embodied in Consumer Goods: A Hybrid Life-Cycle Analysis. Energy and Environment, 2005, 16, 27-45.	2.7	2
244	Forest Carbon—Questions of Indigenous Rights and Market Forces. Environmental Justice, 2014, 7, 33-38.	0.8	2
245	A Social Footprint of Nations: A Comparative Study of the Social Impact of Work. Environmental Footprints and Eco-design of Products and Processes, 2017, , 35-52.	0.7	2
246	Better Global Assessment of Worker Inequality: Comment on "The Employment Footprints of Nations― Journal of Industrial Ecology, 2017, 21, 1188-1197.	2.8	2
247	Implications for farmers of measures to reduce sugars consumption. Bulletin of the World Health Organization, 2021, 99, 41-49.	1.5	2
248	Virtual Special Issue on Resource Footprints of Humanity: Call for Papers. Resources, Conservation and Recycling, 2017, 126, A2-A3.	5.3	1
249	Resource footprints of humanity. Resources, Conservation and Recycling, 2018, 132, 267-268.	5.3	1
250	Principal Methodological Approaches to Studying Sustainable Consumption: Scenario Analysis, Ecological Footprints and Structural Decomposition Analysis. Eco-efficiency in Industry and Science, 2009, , 285-312.	0.1	1
251	The Inequality Footprints of Nations; A Novel Approach to Quantitative Accounting of Income Inequality. Environmental Footprints and Eco-design of Products and Processes, 2017, , 69-91.	0.7	1
252	Multi-level comparisons of input–output tables using cross-entropy indicators. Economic Systems Research, 2023, 35, 75-94.	1.2	1

#	Article	IF	CITATIONS
253	Biodiversity Impact Assessments Using Nested Trade Models. Environmental Science & Technology, 2022, 56, 7378-7380.	4.6	1
254	A minimum-disruption approach to input–output disaster analysis. Spatial Economic Analysis, 2022, 17, 446-470.	0.8	1
255	Carbon footprint and voting preferences of a council. Resources, Conservation and Recycling, 2022, 186, 106535.	5.3	1
256	Accounting for Carbon Flows: Comparing the Principles of the UNFCCC and the SEEA. Society and Natural Resources, 2011, 24, 1216-1227.	0.9	0
257	EDITORS' REPORT. Economic Systems Research, 2011, 23, 447-448.	1.2	Ο
258	EDITORS' REPORT. Economic Systems Research, 2012, 24, 437-439.	1.2	0
259	Editors' report. Economic Systems Research, 2013, 25, 456-457.	1.2	0
260	Editors' Report. Economic Systems Research, 2014, 26, 542-544.	1.2	0
261	Raising the International Poverty Line—A Comparison of Necessary Adjustments of Final Demand Spending in OECD and Non-OECD Countries. Environmental Footprints and Eco-design of Products and Processes, 2017, , 59-67.	0.7	Ο
262	Chapter 10 Australian Regional Waste Footprints. , 2018, , 179-190.		0
263	The Eora MRIO. Journal of Life Cycle Assessment Japan, 2013, 9, 97-100.	0.0	0
264	Review of Social Metrics and Social Footprinting. Environmental Footprints and Eco-design of Products and Processes, 2017, , 27-34.	0.7	0
265	Review of Social Accounting Methodologies. Environmental Footprints and Eco-design of Products and Processes, 2017, , 19-25.	0.7	0