Wenyang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2791422/publications.pdf

Version: 2024-02-01

10	119	6	9
papers	citations	h-index	g-index
10	10	10	176
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Metal Nanoparticle–Carbon Matrix Composites with Tunable Melting Temperature as Phase-Change Materials for Thermal Energy Storage. ACS Applied Nano Materials, 2018, 1, 1894-1903.	5.0	24
2	Application and Limitations of Nanocasting in Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 2782-2790.	4.0	21
3	Paper-Based All-Solid-State Ion-Sensing Platform with a Solid Contact Comprising Colloid-Imprinted Mesoporous Carbon and a Redox Buffer. ACS Applied Nano Materials, 2018, 1, 293-301.	5.0	19
4	Three-Dimensionally Ordered Macroporous Mixed Metal Oxide as an Indicator for Monitoring the Stability of ZIF-8. Chemistry of Materials, 2020, 32, 3850-3859.	6.7	15
5	Extending the Compositional Range of Nanocasting in the Oxozirconium Cluster-Based Metal–Organic Framework NU-1000—A Comparative Structural Analysis. Chemistry of Materials, 2018, 30, 1301-1315.	6.7	10
6	Regenerable Sorbent Pellets for the Removal of Dilute H ₂ S from Claus Process Tail Gas. Industrial & Dilute H ₂ S from Claus Process Tail Gas. Industrial & Dilute H ₂ S from Claus Process Tail Gas. Industrial & Dilute H ₃ S from Claus Process Tail Gas. Industrial & Dilute H ₃ S from Claus Process Tail Gas. Industrial & Dilute H ₃ S from Claus Process Tail Gas. Industrial & Dilute H ₃ S from Claus Process Tail Gas. Industrial & Dilute H ₃ S from Claus Process Tail Gas. Industrial & Dilute H ₃ S from Claus Process Tail Gas. Industrial & Dilute H ₃ S from Claus Process Tail Gas. Industrial & Dilute H ₃ S from Claus Process Tail Gas. Industrial & Dilute H ₃ S from Claus Process Tail Gas. Industrial & Dilute H ₃ S from Claus Process Tail Gas. Industrial & Dilute H ₃ S from Claus Process Tail Gas. Industrial & Dilute H ₄ S from Claus Process Tail Gas. Industrial & Dilute H ₄ S from Claus Process Tail Gas. Industrial & Dilute H ₄ S from Claus Process Tail Gas. Industrial & Dilute H ₄ S from Claus Process Tail Gas. Industrial & Dilute H ₄ S from Claus Process Tail Gas. Industrial & Dilute H ₄ S from Claus Process Tail Gas. Industrial & Dilute H ₄ S from Claus Process Tail Gas. Industrial & Dilute H ₄ S from Claus Process Tail Gas. Industrial & Dilute H ₄ S from Claus Process Tail Gas. Industrial & Dilute H ₄ S from Claus Process Tail Gas. Industrial & Dilute H ₄ S from Claus Process Tail Gas. Industrial & Dilute H ₄ S from Claus Process Tail Gas. Industrial & Dilute H ₄ S from Claus Process Tail Gas. Industrial & Dilute H ₄ S from Claus Process Tail Gas. Industrial & Dilute P ₄ S from Claus Process Tail Gas. Industrial & Dilute P ₄ S from Claus P	3.7	8
7	Direct Synthesis and Pseudomorphic Transformation of Mixed Metal Oxide Nanostructures with Nonâ€Closeâ€Packed Hollow Sphere Arrays. Angewandte Chemie - International Edition, 2018, 57, 15707-15711.	13.8	7
8	High-Capacity Regenerable H2S Sorbent for Reducing Sulfur Emissions. Industrial & Engineering Chemistry Research, 0, , .	3.7	6
9	Diffusive Formation of Hollow Mesoporous Silica Shells from Core–Shell Composites: Insights from the Hydrogen Sulfide Capture Cycle of CuO@mSiO ₂ Nanoparticles. Langmuir, 2020, 36, 6540-6549.	3.5	6
10	Direct Synthesis and Pseudomorphic Transformation of Mixed Metal Oxide Nanostructures with Nonâ€Closeâ€Packed Hollow Sphere Arrays. Angewandte Chemie, 2018, 130, 15933-15937.	2.0	3