Paul S Foster

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2791152/paul-s-foster-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

219	14,142	68	111
papers	citations	h-index	g-index
231	15,813 ext. citations	7.5	6.29
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
219	Interleukin-17 contributes to Ross River virus-induced arthritis and myositis <i>PLoS Pathogens</i> , 2022 , 18, e1010185	7.6	O
218	Proteomic Analysis Reveals a Novel Therapeutic Strategy Using Fludarabine for Steroid-Resistant Asthma Exacerbation <i>Frontiers in Immunology</i> , 2022 , 13, 805558	8.4	0
217	Reply to Dutta etlal.: Understanding scRNA-seq data in the context of the tissue microenvironment requires clinical relevance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	
216	A microRNA-21-mediated SATB1/S100A9/NF- B axis promotes chronic obstructive pulmonary disease pathogenesis. <i>Science Translational Medicine</i> , 2021 , 13, eaav7223	17.5	4
215	Eosinophils and COVID-19: diagnosis, prognosis, and vaccination strategies. <i>Seminars in Immunopathology</i> , 2021 , 43, 383-392	12	10
214	miR-122 promotes virus-induced lung disease by targeting SOCS1. JCI Insight, 2021, 6,	9.9	4
213	GPR109A deficiency promotes IL-33 overproduction and type 2 immune response in food allergy in mice. <i>Allergy: European Journal of Allergy and Clinical Immunology</i> , 2021 , 76, 2613-2616	9.3	1
212	T-helper 22 cells develop as a distinct lineage from Th17 cells during bacterial infection and phenotypic stability is regulated by T-bet. <i>Mucosal Immunology</i> , 2021 , 14, 1077-1087	9.2	1
211	Maternal Particulate Matter Exposure Impairs Lung Health and Is Associated with Mitochondrial Damage. <i>Antioxidants</i> , 2021 , 10,	7.1	4
210	Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. <i>Nature Immunology</i> , 2021 , 22, 851-864	19.1	23
209	Differences in pulmonary group 2 innate lymphoid cells are dependent on mouse age, sex and strain. <i>Immunology and Cell Biology</i> , 2021 , 99, 542-551	5	2
208	PIR-B Regulates CD4 IL17a T-Cell Survival and Restricts T-Cell-Dependent Intestinal Inflammatory Responses. <i>Cellular and Molecular Gastroenterology and Hepatology</i> , 2021 , 12, 1479-1502	7.9	0
207	IL-17A is a common and critical driver of impaired lung function and immunopathology induced by influenza virus, rhinovirus and respiratory syncytial virus. <i>Respirology</i> , 2021 , 26, 1049-1059	3.6	1
206	Single-cell transcriptomic analysis reveals the immune landscape of lung in steroid-resistant asthma exacerbation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	10
205	targeting of miR-223 in experimental eosinophilic oesophagitis. <i>Clinical and Translational Immunology</i> , 2020 , 9, e1210	6.8	1
204	Crucial role for lung iron level and regulation in the pathogenesis and severity of asthma. <i>European Respiratory Journal</i> , 2020 , 55,	13.6	10
203	GSTO1-1 is an upstream suppressor of M2 macrophage skewing and HIF-1Enduced eosinophilic airway inflammation. <i>Clinical and Experimental Allergy</i> , 2020 , 50, 609-624	4.1	10

202	Biologics or immunotherapeutics for asthma?. <i>Pharmacological Research</i> , 2020 , 158, 104782	10.2	1
201	Lipopolysaccharide induces steroid-resistant exacerbations in a mouse model of allergic airway disease collectively through IL-13 and pulmonary macrophage activation. <i>Clinical and Experimental Allergy</i> , 2020 , 50, 82-94	4.1	13
200	Response. <i>Chest</i> , 2020 , 158, 828-829	5.3	
199	A Critical Role for the CXCL3/CXCL5/CXCR2 Neutrophilic Chemotactic Axis in the Regulation of Type 2 Responses in a Model of Rhinoviral-Induced Asthma Exacerbation. <i>Journal of Immunology</i> , 2020 , 205, 2468-2478	5.3	11
198	Group 2 Innate Lymphoid Cells Are Redundant in Experimental Renal Ischemia-Reperfusion Injury. <i>Frontiers in Immunology</i> , 2019 , 10, 826	8.4	16
197	PAI-1 augments mucosal damage in colitis. Science Translational Medicine, 2019, 11,	17.5	27
196	Platelet activating factor receptor regulates colitis-induced pulmonary inflammation through the NLRP3 inflammasome. <i>Mucosal Immunology</i> , 2019 , 12, 862-873	9.2	31
195	IL-22 and its receptors are increased in human and experimental COPD and contribute to pathogenesis. <i>European Respiratory Journal</i> , 2019 , 54,	13.6	23
194	Roles for T/B lymphocytes and ILC2s in experimental chronic obstructive pulmonary disease. Journal of Leukocyte Biology, 2019 , 105, 143-150	6.5	31
193	Toll-like receptor 2 and 4 have opposing roles in the pathogenesis of cigarette smoke-induced chronic obstructive pulmonary disease. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2018 , 314, L298-L317	5.8	23
192	Enhanced Pro-Inflammatory Response of Macrophages to Interleukin-33 in an Allergic Environment. <i>International Archives of Allergy and Immunology</i> , 2018 , 176, 74-82	3.7	5
191	IL-6 Drives Neutrophil-Mediated Pulmonary Inflammation Associated with Bacteremia in Murine Models of Colitis. <i>American Journal of Pathology</i> , 2018 , 188, 1625-1639	5.8	26
190	A critical role for donor-derived IL-22 in cutaneous chronic GVHD. <i>American Journal of Transplantation</i> , 2018 , 18, 810-820	8.7	35
189	Potential Role of MicroRNAs in the Regulation of Antiviral Responses to Influenza Infection. <i>Frontiers in Immunology</i> , 2018 , 9, 1541	8.4	24
188	Corticotrophin Releasing Hormone Regulates NLRP6 and Disrupts Mucosal Homeostasis in Functional Dyspepsia. <i>FASEB Journal</i> , 2018 , 32, 406.6	0.9	
187	Identification of IFN-land IL-27 as Critical Regulators of Respiratory Syncytial Virus-Induced Exacerbation of Allergic Airways Disease in a Mouse Model. <i>Journal of Immunology</i> , 2018 , 200, 237-247	5.3	17
186	Osteoblasts Are Rapidly Ablated by Virus-Induced Systemic Inflammation following Lymphocytic Choriomeningitis Virus or Pneumonia Virus of Mice Infection in Mice. <i>Journal of Immunology</i> , 2018 , 200, 632-642	5.3	6
185	Targeting MicroRNAs: Promising Future Therapeutics in the Treatment of Allergic Airway Disease. Critical Reviews in Eukaryotic Gene Expression, 2018 , 28, 125-127	1.3	5

184	Th22 Cells Form a Distinct Th Lineage from Th17 Cells In Vitro with Unique Transcriptional Properties and Tbet-Dependent Th1 Plasticity. <i>Journal of Immunology</i> , 2017 , 198, 2182-2190	5.3	68
183	Mouse models of severe asthma: Understanding the mechanisms of steroid resistance, tissue remodelling and disease exacerbation. <i>Respirology</i> , 2017 , 22, 874-885	3.6	33
182	TRAIL signaling is proinflammatory and proviral in a murine model of rhinovirus 1B infection. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2017 , 312, L89-L99	5.8	14
181	Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c. <i>Journal of Pathology</i> , 2017 , 243, 510-523	9.4	60
180	Vitamin E isoform Etocotrienol protects against emphysema in cigarette smoke-induced COPD. <i>Free Radical Biology and Medicine</i> , 2017 , 110, 332-344	7.8	24
179	Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. <i>Immunological Reviews</i> , 2017 , 278, 41-62	11.3	83
178	Modeling T 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. <i>Immunological Reviews</i> , 2017 , 278, 20-40	11.3	68
177	MicroRNAs as therapeutics for future drug delivery systems in treatment of lung diseases. <i>Drug Delivery and Translational Research</i> , 2017 , 7, 168-178	6.2	26
176	MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase-mediated suppression of histone deacetylase 2. <i>Journal of Allergy and Clinical Immunology</i> , 2017 , 139, 519-532	11.5	132
175	MicroRNA-125a and -b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD. <i>JCI Insight</i> , 2017 , 2, e90443	9.9	70
174	Identification of the microRNA networks contributing to macrophage differentiation and function. <i>Oncotarget</i> , 2016 , 7, 28806-20	3.3	9
173	Bromodomain and Extra Terminal (BET) Inhibitor Suppresses Macrophage-Driven Steroid-Resistant Exacerbations of Airway Hyper-Responsiveness and Inflammation. <i>PLoS ONE</i> , 2016 , 11, e0163392	3.7	16
172	TLR2, TLR4 AND MyD88 Mediate Allergic Airway Disease (AAD) and Streptococcus pneumoniae-Induced Suppression of AAD. <i>PLoS ONE</i> , 2016 , 11, e0156402	3.7	22
171	Targeting MicroRNA Function in Respiratory Diseases: Mini-Review. <i>Frontiers in Physiology</i> , 2016 , 7, 21	4.6	51
170	TRAIL deficiency and PP2A activation with salmeterol ameliorates egg allergen-driven eosinophilic esophagitis. <i>American Journal of Physiology - Renal Physiology</i> , 2016 , 311, G998-G1008	5.1	8
169	TNF-land Macrophages Are Critical for Respiratory Syncytial Virus-Induced Exacerbations in a Mouse Model of Allergic Airways Disease. <i>Journal of Immunology</i> , 2016 , 196, 3547-58	5.3	38
168	MicroRNA-487b Is a Negative Regulator of Macrophage Activation by Targeting IL-33 Production. Journal of Immunology, 2016 , 196, 3421-8	5.3	26
167	Mouse models of acute exacerbations of allergic asthma. <i>Respirology</i> , 2016 , 21, 842-9	3.6	33

(2014-2015)

166	Quantitative reduction of the TCR adapter protein SLP-76 unbalances immunity and immune regulation. <i>Journal of Immunology</i> , 2015 , 194, 2587-95	5.3	20
165	Targeting PI3K-p110 Suppresses Influenza Virus Infection in Chronic Obstructive Pulmonary Disease. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2015 , 191, 1012-23	10.2	99
164	Toll-like receptor 7 governs interferon and inflammatory responses to rhinovirus and is suppressed by IL-5-induced lung eosinophilia. <i>Thorax</i> , 2015 , 70, 854-61	7.3	72
163	Stop Press: Eosinophils Drafted to Join the Th17 Team. <i>Immunity</i> , 2015 , 43, 7-9	32.3	12
162	Antagonism of miR-328 increases the antimicrobial function of macrophages and neutrophils and rapid clearance of non-typeable Haemophilus influenzae (NTHi) from infected lung. <i>PLoS Pathogens</i> , 2015 , 11, e1004549	7.6	47
161	Regulatory T cells prevent inducible BALT formation by dampening neutrophilic inflammation. <i>Journal of Immunology</i> , 2015 , 194, 4567-76	5.3	29
160	MicroRNA-9 regulates steroid-resistant airway hyperresponsiveness by reducing protein phosphatase 2A activity. <i>Journal of Allergy and Clinical Immunology</i> , 2015 , 136, 462-73	11.5	67
159	Macrolide therapy suppresses key features of experimental steroid-sensitive and steroid-insensitive asthma. <i>Thorax</i> , 2015 , 70, 458-67	7.3	103
158	Potential mechanisms regulating pulmonary pathology in inflammatory bowel disease. <i>Journal of Leukocyte Biology</i> , 2015 , 98, 727-37	6.5	24
157	Dual proinflammatory and antiviral properties of pulmonary eosinophils in respiratory syncytial virus vaccine-enhanced disease. <i>Journal of Virology</i> , 2015 , 89, 1564-78	6.6	24
156	MicroRNA Expression Is Altered in an Ovalbumin-Induced Asthma Model and Targeting miR-155 with Antagomirs Reveals Cellular Specificity. <i>PLoS ONE</i> , 2015 , 10, e0144810	3.7	50
155	Using multiple online databases to help identify microRNAs regulating the airway epithelial cell response to a virus-like stimulus. <i>Respirology</i> , 2015 , 20, 1206-12	3.6	15
154	MicroRNA function in mast cell biology: protocols to characterize and modulate microRNA expression. <i>Methods in Molecular Biology</i> , 2015 , 1220, 287-304	1.4	10
153	Tumor necrosis factor-related apoptosis-inducing ligand regulates hallmark features of airways remodeling in allergic airways disease. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2014 , 51, 86-93	5.7	31
152	MicroRNA: potential biomarkers and therapeutic targets for allergic asthma?. <i>Annals of Medicine</i> , 2014 , 46, 633-9	1.5	16
151	Salmeterol attenuates chemotactic responses in rhinovirus-induced exacerbation of allergic airways disease by modulating protein phosphatase 2A. <i>Journal of Allergy and Clinical Immunology</i> , 2014 , 133, 1720-7	11.5	28
150	Respiratory viral infection, epithelial cytokines, and innate lymphoid cells in asthma exacerbations. <i>Journal of Leukocyte Biology</i> , 2014 , 96, 391-6	6.5	43
149	Identification of microRNAs regulating the developmental pathways of bone marrow derived mast cells. <i>PLoS ONE</i> , 2014 , 9, e98139	3.7	14

148	Asthma 2014: from monoclonals to the microbiome. Lancet Respiratory Medicine, the, 2014, 2, 956-8	35.1	1
147	Production and differentiation of myeloid cells driven by proinflammatory cytokines in response to acute pneumovirus infection in mice. <i>Journal of Immunology</i> , 2014 , 193, 4072-82	5.3	19
146	Importance of mast cell Prss31/transmembrane tryptase/tryptase-In lung function and experimental chronic obstructive pulmonary disease and colitis. <i>Journal of Biological Chemistry</i> , 2014 , 289, 18214-27	5.4	67
145	Expression profiling of differentiating eosinophils in bone marrow cultures predicts functional links between microRNAs and their target mRNAs. <i>PLoS ONE</i> , 2014 , 9, e97537	3.7	14
144	Absence of Toll-IL-1 receptor 8/single immunoglobulin IL-1 receptor-related molecule reduces house dust mite-induced allergic airway inflammation in mice. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2013 , 49, 481-90	5.7	19
143	Reply to eosinophil cytolysis and release of cell-free granules. <i>Nature Reviews Immunology</i> , 2013 , 13, 902	36.5	4
142	The E3 ubiquitin ligase midline 1 promotes allergen and rhinovirus-induced asthma by inhibiting protein phosphatase 2A activity. <i>Nature Medicine</i> , 2013 , 19, 232-7	50.5	110
141	Eosinophils: changing perspectives in health and disease. <i>Nature Reviews Immunology</i> , 2013 , 13, 9-22	36.5	559
140	A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. <i>Journal of Allergy and Clinical Immunology</i> , 2013 , 131, 752-62	11.5	165
139	Toll-like receptor 7 gene deficiency and early-life Pneumovirus infection interact to predispose toward the development of asthma-like pathology in mice. <i>Journal of Allergy and Clinical Immunology</i> , 2013 , 131, 1331-9.e10	11.5	49
138	The emerging role of microRNAs in regulating immune and inflammatory responses in the lung. <i>Immunological Reviews</i> , 2013 , 253, 198-215	11.3	76
137	Th2 cytokine antagonists: potential treatments for severe asthma. <i>Expert Opinion on Investigational Drugs</i> , 2013 , 22, 49-69	5.9	64
136	Development of asthmatic inflammation in mice following early-life exposure to ambient environmental particulates and chronic allergen challenge. <i>DMM Disease Models and Mechanisms</i> , 2013 , 6, 479-88	4.1	17
135	Pneumococcal components induce regulatory T cells that attenuate the development of allergic airways disease by deviating and suppressing the immune response to allergen. <i>Journal of Immunology</i> , 2013 , 191, 4112-20	5.3	19
134	Epigenetic changes associated with disease progression in a mouse model of childhood allergic asthma. <i>DMM Disease Models and Mechanisms</i> , 2013 , 6, 993-1000	4.1	15
133	Inhibiting AKT phosphorylation employing non-cytotoxic anthraquinones ameliorates TH2 mediated allergic airways disease and rhinovirus exacerbation. <i>PLoS ONE</i> , 2013 , 8, e79565	3.7	16
132	Activation of olfactory receptors on mouse pulmonary macrophages promotes monocyte chemotactic protein-1 production. <i>PLoS ONE</i> , 2013 , 8, e80148	3.7	27
131	Preventive effect of N-acetylcysteine in a mouse model of steroid resistant acute exacerbation of asthma. <i>EXCLI Journal</i> , 2013 , 12, 184-92	2.4	15

(2010-2012)

130	Combined Haemophilus influenzae respiratory infection and allergic airways disease drives chronic infection and features of neutrophilic asthma. <i>Thorax</i> , 2012 , 67, 588-99	7.3	114
129	Are mouse models of asthma appropriate for investigating the pathogenesis of airway hyper-responsiveness?. <i>Frontiers in Physiology</i> , 2012 , 3, 312	4.6	40
128	Emerging roles of pulmonary macrophages in driving the development of severe asthma. <i>Journal of Leukocyte Biology</i> , 2012 , 91, 557-69	6.5	74
127	Components of Streptococcus pneumoniae suppress allergic airways disease and NKT cells by inducing regulatory T cells. <i>Journal of Immunology</i> , 2012 , 188, 4611-20	5.3	66
126	Interferon-[]pulmonary macrophages and airway responsiveness in asthma. <i>Inflammation and Allergy: Drug Targets</i> , 2012 , 11, 292-7		22
125	TLR2, but not TLR4, is required for effective host defence against Chlamydia respiratory tract infection in early life. <i>PLoS ONE</i> , 2012 , 7, e39460	3.7	49
124	Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. <i>Journal of Allergy and Clinical Immunology</i> , 2011 , 128, 160-167.	.e4·5	176
123	New insights into the generation of Th2 immunity and potential therapeutic targets for the treatment of asthma. <i>Current Opinion in Allergy and Clinical Immunology</i> , 2011 , 11, 39-45	3.3	42
122	Cytokine/anti-cytokine therapy - novel treatments for asthma?. <i>British Journal of Pharmacology</i> , 2011 , 163, 81-95	8.6	115
121	Altered expression of microRNA in the airway wall in chronic asthma: miR-126 as a potential therapeutic target. <i>BMC Pulmonary Medicine</i> , 2011 , 11, 29	3.5	112
120	Dietary lycopene supplementation suppresses Th2 responses and lung eosinophilia in a mouse model of allergic asthma. <i>Journal of Nutritional Biochemistry</i> , 2011 , 22, 95-100	6.3	31
119	Antigen-specific T-cell responses to a recombinant fowlpox virus are dependent on MyD88 and interleukin-18 and independent of Toll-like receptor 7 (TLR7)- and TLR9-mediated innate immune recognition. <i>Journal of Virology</i> , 2011 , 85, 3385-96	6.6	8
118	Interleukin-13 (IL-13)/IL-13 receptor alpha1 (IL-13Ralpha1) signaling regulates intestinal epithelial cystic fibrosis transmembrane conductance regulator channel-dependent Cl- secretion. <i>Journal of Biological Chemistry</i> , 2011 , 286, 13357-69	5.4	36
117	Plasmacytoid dendritic cells promote host defense against acute pneumovirus infection via the TLR7-MyD88-dependent signaling pathway. <i>Journal of Immunology</i> , 2011 , 186, 5938-48	5.3	68
116	Interleukin-13 promotes susceptibility to chlamydial infection of the respiratory and genital tracts. <i>PLoS Pathogens</i> , 2011 , 7, e1001339	7.6	58
115	Haemophilus influenzae infection drives IL-17-mediated neutrophilic allergic airways disease. <i>PLoS Pathogens</i> , 2011 , 7, e1002244	7.6	112
114	An alternate STAT6-independent pathway promotes eosinophil influx into blood during allergic airway inflammation. <i>PLoS ONE</i> , 2011 , 6, e17766	3.7	9
113	Fibulin-1 is increased in asthmaa novel mediator of airway remodeling?. <i>PLoS ONE</i> , 2010 , 5, e13360	3.7	45

112	Pneumococcal conjugate vaccine-induced regulatory T cells suppress the development of allergic airways disease. <i>Thorax</i> , 2010 , 65, 1053-60	7.3	53
111	Chlamydial respiratory infection during allergen sensitization drives neutrophilic allergic airways disease. <i>Journal of Immunology</i> , 2010 , 184, 4159-69	5.3	72
110	NK cell deficiency predisposes to viral-induced Th2-type allergic inflammation via epithelial-derived IL-25. <i>Journal of Immunology</i> , 2010 , 185, 4681-90	5.3	112
109	IL-27/IFN-linduce MyD88-dependent steroid-resistant airway hyperresponsiveness by inhibiting glucocorticoid signaling in macrophages. <i>Journal of Immunology</i> , 2010 , 185, 4401-9	5.3	87
108	Reduction of tumstatin in asthmatic airways contributes to angiogenesis, inflammation, and hyperresponsiveness. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2010 , 181, 106-15	10.2	52
107	Early-life chlamydial lung infection enhances allergic airways disease through age-dependent differences in immunopathology. <i>Journal of Allergy and Clinical Immunology</i> , 2010 , 125, 617-25, 625.e1-6	625. 2 6	84
106	Alveolar macrophages stimulate enhanced cytokine production by pulmonary CD4+ T-lymphocytes in an exacerbation of murine chronic asthma. <i>American Journal of Pathology</i> , 2010 , 177, 1657-64	5.8	39
105	Potential therapeutic targets for steroid-resistant asthma. <i>Current Drug Targets</i> , 2010 , 11, 957-70	3	57
104	Early-life viral infection and allergen exposure interact to induce an asthmatic phenotype in mice. <i>Respiratory Research</i> , 2010 , 11, 14	7.3	55
103	Ym1/2 promotes Th2 cytokine expression by inhibiting 12/15(S)-lipoxygenase: identification of a novel pathway for regulating allergic inflammation. <i>Journal of Immunology</i> , 2009 , 182, 5393-9	5.3	72
102	Pulmonary eosinophils and their role in immunopathologic responses to formalin-inactivated pneumonia virus of mice. <i>Journal of Immunology</i> , 2009 , 183, 604-12	5.3	20
101	Pathogenesis of steroid-resistant airway hyperresponsiveness: interaction between IFN-gamma and TLR4/MyD88 pathways. <i>Journal of Immunology</i> , 2009 , 182, 5107-15	5.3	68
100	Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 18704-9	11.5	360
99	Expression of kinin receptors on eosinophils: comparison of asthmatic patients and healthy subjects. <i>Journal of Leukocyte Biology</i> , 2009 , 85, 544-52	6.5	19
98	Epigenetic changes in childhood asthma. <i>DMM Disease Models and Mechanisms</i> , 2009 , 2, 549-53	4.1	29
97	Emerging role of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) as a key regulator of inflammatory responses. <i>Clinical and Experimental Pharmacology and Physiology</i> , 2009 , 36, 1049-53	3	47
96	Toll/IL-1 signaling is critical for house dust mite-specific helper T cell type 2 and type 17 [corrected] responses. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2009 , 179, 883-93	10.2	136
95	TLR7 is involved in sequence-specific sensing of single-stranded RNAs in human macrophages. <i>Journal of Immunology</i> , 2008 , 180, 2117-24	5.3	119

(2007-2008)

94	The IL-3/IL-5/GM-CSF common receptor plays a pivotal role in the regulation of Th2 immunity and allergic airway inflammation. <i>Journal of Immunology</i> , 2008 , 180, 1199-206	5.3	95
93	Chlamydia muridarum infection subverts dendritic cell function to promote Th2 immunity and airways hyperreactivity. <i>Journal of Immunology</i> , 2008 , 180, 2225-32	5.3	50
92	Glutathione transferase P1: an endogenous inhibitor of allergic responses in a mouse model of asthma. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2008 , 178, 1202-10	10.2	25
91	Steroid-resistant neutrophilic inflammation in a mouse model of an acute exacerbation of asthma. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2008 , 39, 543-50	5.7	103
90	IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity. Journal of Experimental Medicine, 2008 , 205, 897-913	16.6	207
89	The "classical" ovalbumin challenge model of asthma in mice. Current Drug Targets, 2008, 9, 485-94	3	171
88	Targeting eosinophils in asthma. Current Molecular Medicine, 2008, 8, 585-90	2.5	26
87	Eosinophil trafficking in allergy and asthma. <i>Journal of Allergy and Clinical Immunology</i> , 2007 , 119, 1303-10; quiz 1311-2	11.5	298
86	Critical link between TRAIL and CCL20 for the activation of TH2 cells and the expression of allergic airway disease. <i>Nature Medicine</i> , 2007 , 13, 1308-15	50.5	102
85	The contribution of toll-like receptors to the pathogenesis of asthma. <i>Immunology and Cell Biology</i> , 2007 , 85, 463-70	5	42
84	Impaired resistance in early secondary Nippostrongylus brasiliensis infections in mice with defective eosinophilopoeisis. <i>International Journal for Parasitology</i> , 2007 , 37, 1367-78	4.3	81
83	Expression of kinin B1 and B2 receptors in immature, monocyte-derived dendritic cells and bradykinin-mediated increase in intracellular Ca2+ and cell migration. <i>Journal of Leukocyte Biology</i> , 2007 , 81, 1445-54	6.5	37
82	Eosinophils from lineage-ablated Delta dblGATA bone marrow progenitors: the dblGATA enhancer in the promoter of GATA-1 is not essential for differentiation ex vivo. <i>Journal of Immunology</i> , 2007 , 179, 1693-9	5.3	26
81	Comparative roles of IL-4, IL-13, and IL-4Ralpha in dendritic cell maturation and CD4+ Th2 cell function. <i>Journal of Immunology</i> , 2007 , 178, 219-27	5.3	63
80	Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. <i>Blood</i> , 2007 , 110, 1578-86	2.2	200
79	Neonatal chlamydial infection induces mixed T-cell responses that drive allergic airway disease. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 556-64	10.2	99
78	Regulation of microRNA by antagomirs: a new class of pharmacological antagonists for the specific regulation of gene function?. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2007 , 36, 8-12	5.7	68
77	Regulation of carcinogenesis by IL-5 and CCL11: a potential role for eosinophils in tumor immune surveillance. <i>Journal of Immunology</i> , 2007 , 178, 4222-9	5.3	152

76	Strain-dependent resistance to allergen-induced lung pathophysiology in mice correlates with rate of apoptosis of lung-derived eosinophils. <i>Journal of Leukocyte Biology</i> , 2007 , 81, 1362-73	6.5	26
75	Inhibition of allergic airways disease by immunomodulatory therapy with whole killed Streptococcus pneumoniae. <i>Vaccine</i> , 2007 , 25, 8154-62	4.1	56
74	Physiological concentrations of transforming growth factor beta1 selectively inhibit human dendritic cell function. <i>International Immunopharmacology</i> , 2007 , 7, 1924-33	5.8	51
73	Interleukin-5 does not influence differential transcription of transmembrane and soluble isoforms of IL-5R alpha in vivo. <i>European Journal of Haematology</i> , 2006 , 77, 181-90	3.8	6
72	Interferon-gamma as a possible target in chronic asthma. <i>Inflammation and Allergy: Drug Targets</i> , 2006 , 5, 253-6		67
71	Airway hyperreactivity in exacerbation of chronic asthma is independent of eosinophilic inflammation. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2006 , 35, 565-70	5.7	46
70	ICAM-1-dependent pathways regulate colonic eosinophilic inflammation. <i>Journal of Leukocyte Biology</i> , 2006 , 80, 330-41	6.5	41
69	Mechanistic analysis of experimental food allergen-induced cutaneous reactions. <i>Journal of Leukocyte Biology</i> , 2006 , 80, 258-66	6.5	16
68	Inhibition of arginase I activity by RNA interference attenuates IL-13-induced airways hyperresponsiveness. <i>Journal of Immunology</i> , 2006 , 177, 5595-603	5.3	86
67	Employment of microRNA profiles and RNA interference and antagomirs for the characterization and treatment of respiratory disease. <i>Drug Discovery Today: Therapeutic Strategies</i> , 2006 , 3, 325-332		1
66		2.2	144
	and treatment of respiratory disease. <i>Drug Discovery Today: Therapeutic Strategies</i> , 2006 , 3, 325-332	2.2 5·7	
66	and treatment of respiratory disease. <i>Drug Discovery Today: Therapeutic Strategies</i> , 2006 , 3, 325-332 Schistosoma mansoni infection in eosinophil lineage-ablated mice. <i>Blood</i> , 2006 , 108, 2420-7 Transgenic expression of bean alpha-amylase inhibitor in peas results in altered structure and		144
66 65	and treatment of respiratory disease. <i>Drug Discovery Today: Therapeutic Strategies</i> , 2006 , 3, 325-332 Schistosoma mansoni infection in eosinophil lineage-ablated mice. <i>Blood</i> , 2006 , 108, 2420-7 Transgenic expression of bean alpha-amylase inhibitor in peas results in altered structure and immunogenicity. <i>Journal of Agricultural and Food Chemistry</i> , 2005 , 53, 9023-30 Negative regulation of eosinophil recruitment to the lung by the chemokine monokine induced by IFN-gamma (Mig, CXCL9). <i>Proceedings of the National Academy of Sciences of the United States of</i>	5.7	144
666564	Schistosoma mansoni infection in eosinophil lineage-ablated mice. <i>Blood</i> , 2006 , 108, 2420-7 Transgenic expression of bean alpha-amylase inhibitor in peas results in altered structure and immunogenicity. <i>Journal of Agricultural and Food Chemistry</i> , 2005 , 53, 9023-30 Negative regulation of eosinophil recruitment to the lung by the chemokine monokine induced by IFN-gamma (Mig, CXCL9). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 1987-92 Polymorphisms in IL-4R alpha correlate with airways hyperreactivity, eosinophilia, and Ym protein	5.7	144 139 81
66656463	Schistosoma mansoni infection in eosinophil lineage-ablated mice. <i>Blood</i> , 2006 , 108, 2420-7 Transgenic expression of bean alpha-amylase inhibitor in peas results in altered structure and immunogenicity. <i>Journal of Agricultural and Food Chemistry</i> , 2005 , 53, 9023-30 Negative regulation of eosinophil recruitment to the lung by the chemokine monokine induced by IFN-gamma (Mig, CXCL9). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 1987-92 Polymorphisms in IL-4R alpha correlate with airways hyperreactivity, eosinophilia, and Ym protein expression in allergic IL-13-/- mice. <i>Journal of Immunology</i> , 2004 , 172, 1092-8 Effects of anticytokine therapy in a mouse model of chronic asthma. <i>American Journal of</i>	5·7 11.5 5·3	144 139 81 29
6665646362	Schistosoma mansoni infection in eosinophil lineage-ablated mice. <i>Blood</i> , 2006 , 108, 2420-7 Transgenic expression of bean alpha-amylase inhibitor in peas results in altered structure and immunogenicity. <i>Journal of Agricultural and Food Chemistry</i> , 2005 , 53, 9023-30 Negative regulation of eosinophil recruitment to the lung by the chemokine monokine induced by IFN-gamma (Mig, CXCL9). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 1987-92 Polymorphisms in IL-4R alpha correlate with airways hyperreactivity, eosinophilia, and Ym protein expression in allergic IL-13-/- mice. <i>Journal of Immunology</i> , 2004 , 172, 1092-8 Effects of anticytokine therapy in a mouse model of chronic asthma. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2004 , 170, 1043-8	5·7 11.5 5·3 10.2	144 139 81 29

(2002-2004)

58	Chemokines in eosinophil-associated gastrointestinal disorders. <i>Current Allergy and Asthma Reports</i> , 2004 , 4, 74-82	5.6	22
57	T helper-2 immunity regulates bronchial hyperresponsiveness in eosinophil-associated gastrointestinal disease in mice. <i>Gastroenterology</i> , 2004 , 127, 105-18	13.3	21
56	A plant-based allergy vaccine suppresses experimental asthma via an IFN-gamma and CD4+CD45RBlow T cell-dependent mechanism. <i>Journal of Immunology</i> , 2003 , 171, 2116-26	5.3	41
55	Antigen-specific production of interleukin (IL)-13 and IL-5 cooperate to mediate IL-4Ralpha-independent airway hyperreactivity. <i>European Journal of Immunology</i> , 2003 , 33, 3377-85	6.1	32
54	Eotaxin-2 and IL-5 cooperate in the lung to regulate IL-13 production and airway eosinophilia and hyperreactivity. <i>Journal of Allergy and Clinical Immunology</i> , 2003 , 112, 935-43	11.5	97
53	Chemokines in asthma: cooperative interaction between chemokines and IL-13. <i>Journal of Allergy and Clinical Immunology</i> , 2003 , 111, 227-42; quiz 243	11.5	261
52	Polymorphisms in the IL 18 gene are associated with specific sensitization to common allergens and allergic rhinitis. <i>Journal of Allergy and Clinical Immunology</i> , 2003 , 111, 117-22	11.5	108
51	Inhibition of inflammation and remodeling by roflumilast and dexamethasone in murine chronic asthma. <i>Journal of Pharmacology and Experimental Therapeutics</i> , 2003 , 307, 349-55	4.7	136
50	Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. <i>Journal of Clinical Investigation</i> , 2003 , 111, 1863-74	15.9	288
49	Regulation of eosinophil migration and Th2 cell function by IL-5 and eotaxin. <i>Inflammation and Allergy: Drug Targets</i> , 2003 , 2, 169-74		42
48	Interleukins-4, -5, and -13: emerging therapeutic targets in allergic disease 2002 , 94, 253-64		68
47	CD4(+) T-lymphocytes regulate airway remodeling and hyper-reactivity in a mouse model of chronic asthma. <i>Laboratory Investigation</i> , 2002 , 82, 455-62	5.9	47
46	Eotaxin expression by epithelial cells and plasma cells in chronic asthma. <i>Laboratory Investigation</i> , 2002 , 82, 495-504	5.9	25
45	Enterocyte expression of the eotaxin and interleukin-5 transgenes induces compartmentalized dysregulation of eosinophil trafficking. <i>Journal of Biological Chemistry</i> , 2002 , 277, 4406-12	5.4	77
44	Biochemical and functional characterization of human transmembrane tryptase (TMT)/tryptase gamma. TMT is an exocytosed mast cell protease that induces airway hyperresponsiveness in vivo via an interleukin-13/interleukin-4 receptor alpha/signal transducer and activator of transcription	5.4	61
43	Intrinsic defect in T cell production of interleukin (IL)-13 in the absence of both IL-5 and eotaxin precludes the development of eosinophilia and airways hyperreactivity in experimental asthma. Journal of Experimental Medicine, 2002, 195, 1433-44	16.6	230
42	Altered zinc homeostasis and caspase-3 activity in murine allergic airway inflammation. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2002 , 27, 286-96	5.7	67
41	Experimental analysis of eosinophil-associated gastrointestinal diseases. <i>Current Opinion in Allergy and Clinical Immunology</i> , 2002 , 2, 239-48	3.3	24

40	Modeling allergic asthma in mice: pitfalls and opportunities. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2002 , 27, 267-72	5.7	175
39	Interleukin-5 and eosinophils as therapeutic targets for asthma. <i>Trends in Molecular Medicine</i> , 2002 , 8, 162-7	11.5	61
38	Murine model of chronic human asthma. <i>Immunology and Cell Biology</i> , 2001 , 79, 141-4	5	39
37	Elemental signals regulating eosinophil accumulation in the lung. <i>Immunological Reviews</i> , 2001 , 179, 173-81	11.3	190
36	Antiviral potential of chemokines. <i>BioEssays</i> , 2001 , 23, 428-35	4.1	13
35	A pathological function for eotaxin and eosinophils in eosinophilic gastrointestinal inflammation. <i>Nature Immunology</i> , 2001 , 2, 353-60	19.1	249
34	IL-13 induces airways hyperreactivity independently of the IL-4R alpha chain in the allergic lung. <i>Journal of Immunology</i> , 2001 , 167, 1683-92	5.3	127
33	Active vaccination against IL-5 bypasses immunological tolerance and ameliorates experimental asthma. <i>Journal of Immunology</i> , 2001 , 167, 3792-9	5.3	75
32	Eosinophils promote allergic disease of the lung by regulating CD4(+) Th2 lymphocyte function. <i>Journal of Immunology</i> , 2001 , 167, 3146-55	5.3	172
31	Expression of the Ym2 lectin-binding protein is dependent on interleukin (IL)-4 and IL-13 signal transduction: identification of a novel allergy-associated protein. <i>Journal of Biological Chemistry</i> , 2001 , 276, 41969-76	5.4	133
30	Transcription of the interferon gamma (IFN-gamma)-inducible chemokine Mig in IFN-gamma-deficient mice. <i>Journal of Biological Chemistry</i> , 2001 , 276, 7568-74	5.4	29
29	Interleukin-13 mediates airways hyperreactivity through the IL-4 receptor-alpha chain and STAT-6 independently of IL-5 and eotaxin. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2001 , 25, 522-30	5.7	127
28	IL-13 induces eosinophil recruitment into the lung by an IL-5- and eotaxin-dependent mechanism. <i>Journal of Allergy and Clinical Immunology</i> , 2001 , 108, 594-601	11.5	230
27	Chemokine and cytokine cooperativity: eosinophil migration in the asthmatic response. <i>Immunology and Cell Biology</i> , 2000 , 78, 415-22	5	37
26	Interferon-inducible chemokines and immunity to poxvirus infections. <i>Immunological Reviews</i> , 2000 , 177, 127-33	11.3	19
25	Dissociation of inflammatory and epithelial responses in a murine model of chronic asthma. <i>Laboratory Investigation</i> , 2000 , 80, 655-62	5.9	78
24	The effect of IL-5 and eotaxin expression in the lung on eosinophil trafficking and degranulation and the induction of bronchial hyperreactivity. <i>Journal of Immunology</i> , 2000 , 164, 2142-50	5.3	154
23	Integrated signals between IL-13, IL-4, and IL-5 regulate airways hyperreactivity. <i>Journal of Immunology</i> , 2000 , 165, 108-13	5.3	270

22	Allergic networks regulating eosinophilia. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 1999 , 21, 451-4	5.7	23
21	Chemokines and chemokine receptors: their role in allergic airway disease. <i>Journal of Clinical Immunology</i> , 1999 , 19, 250-65	5.7	65
20	Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. <i>Journal of Clinical Investigation</i> , 1999 , 103, 1719-27	15.9	291
19	Mucosal IL-12 gene delivery inhibits allergic airways disease and restores local antiviral immunity. <i>European Journal of Immunology</i> , 1998 , 28, 413-23	6.1	105
18	Cellular and molecular regulation of eosinophil trafficking to the lung. <i>Immunology and Cell Biology</i> , 1998 , 76, 454-60	5	30
17	Mucosal IL-12 gene delivery inhibits allergic airways disease and restores local antiviral immunity 1998, 28, 413		5
16	Interleukin-5 and eosinophils induce airway damage and bronchial hyperreactivity during allergic airway inflammation in BALB/c mice. <i>Immunology and Cell Biology</i> , 1997 , 75, 284-8	5	88
15	Cytokines as targets for the inhibition of eosinophilic inflammation 1997 , 74, 259-83		25
14	Interleukin-4 and interleukin-5 as targets for the inhibition of eosinophilic inflammation and allergic airways hyperreactivity. <i>Memorias Do Instituto Oswaldo Cruz</i> , 1997 , 92 Suppl 2, 55-61	2.6	12
13	The role of interleukin-5 (IL-5) in vivo: studies with IL-5 deficient mice. <i>Memorias Do Instituto Oswaldo Cruz</i> , 1997 , 92 Suppl 2, 63-8	2.6	36
12	Cellular and molecular mechanisms involved in the regulation of eosinophil trafficking in vivo. <i>Medicinal Research Reviews</i> , 1996 , 16, 407-32	14.4	19
11	Cellular and molecular mechanisms involved in the regulation of eosinophil trafficking in vivo 1996 , 16, 407		2
10	Molecular cloning of the cDNA encoding human skeletal muscle triadin and its localisation to chromosome 6q22-6q23. <i>FEBS Journal</i> , 1995 , 233, 258-65		12
9	The role of phosphoinositide metabolism in Ca2+ signalling of skeletal muscle cells. <i>International Journal of Biochemistry & Cell Biology</i> , 1994 , 26, 449-68		10
8	The metabolism of D-myo-inositol 1,4,5-trisphosphate and D-myo-inositol 1,3,4,5-tetrakisphosphate by porcine skeletal muscle. <i>FEBS Journal</i> , 1994 , 222, 955-64		12
7	The effect of calcium channel antagonists and BAY K 8644 on calcium fluxes of malignant hyperpyrexia-susceptible muscle. <i>International Journal of Biochemistry & Cell Biology</i> , 1993 , 25, 495-504		2
6	Malignant hyperpyrexia. International Journal of Biochemistry & Cell Biology, 1990, 22, 1217-22		10
5	31P-NMR spectroscopy: the metabolic profile of malignant hyperpyrexic porcine skeletal muscle. Muscle and Nerve, 1989 , 12, 390-6	3.4	6

4	malignant hyperpyrexia susceptible porcine skeletal muscle. <i>International Journal of Biochemistry & Cell Biology</i> , 1989 , 21, 1119-26		6
3	Effect of steroids on beta-adrenoceptor-mediated relaxation of pig bronchus. <i>British Journal of Pharmacology</i> , 1983 , 78, 441-5	8.6	90
2	Effect of hypothermia on beta 1-adrenoceptor-mediated relaxation of pig bronchus. <i>British Journal of Pharmacology</i> , 1983 , 80, 699-702	8.6	7
1	Eosinophils: Biological Properties and Role in Health and Disease258-294		O