Paul S Foster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2791152/publications.pdf Version: 2024-02-01

		9264	17592
228	17,142	74	121
papers	citations	h-index	g-index
231	231	231	15501
all docs	docs citations	times ranked	citing authors

DALLI S FOSTED

#	Article	IF	CITATIONS
1	Eosinophils: changing perspectives in health and disease. Nature Reviews Immunology, 2013, 13, 9-22.	22.7	736
2	Eosinophils: Biological Properties and Role in Health and Disease. Clinical and Experimental Allergy, 2008, 38, 709-750.	2.9	702
3	Antagonism of microRNA-126 suppresses the effector function of T _H 2 cells and the development of allergic airways disease. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18704-18709.	7.1	401
4	Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. Journal of Clinical Investigation, 2003, 111, 1863-1874.	8.2	353
5	Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. Journal of Clinical Investigation, 1999, 103, 1719-1727.	8.2	352
6	Eosinophil trafficking in allergy and asthma. Journal of Allergy and Clinical Immunology, 2007, 119, 1303-1310.	2.9	341
7	A pathological function for eotaxin and eosinophils in eosinophilic gastrointestinal inflammation. Nature Immunology, 2001, 2, 353-360.	14.5	297
8	Integrated Signals Between IL-13, IL-4, and IL-5 Regulate Airways Hyperreactivity. Journal of Immunology, 2000, 165, 108-113.	0.8	292
9	Chemokines in asthma: Cooperative interaction between chemokines and IL-13. Journal of Allergy and Clinical Immunology, 2003, 111, 227-242.	2.9	286
10	IL-13 induces eosinophil recruitment into the lung by an IL-5– and eotaxin-dependent mechanism. Journal of Allergy and Clinical Immunology, 2001, 108, 594-601.	2.9	264
11	Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood, 2007, 110, 1578-1586.	1.4	263
12	Intrinsic Defect in T Cell Production of Interleukin (IL)-13 in the Absence of Both IL-5 and Eotaxin Precludes the Development of Eosinophilia and Airways Hyperreactivity in Experimental Asthma. Journal of Experimental Medicine, 2002, 195, 1433-1444.	8.5	250
13	IL-9– and mast cell–mediated intestinal permeability predisposes to oral antigen hypersensitivity. Journal of Experimental Medicine, 2008, 205, 897-913.	8.5	246
14	A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. Journal of Allergy and Clinical Immunology, 2013, 131, 752-762.e7.	2.9	210
15	Elemental signals regulating eosinophil accumulation in the lung. Immunological Reviews, 2001, 179, 173-181.	6.0	207
16	Inhibition of house dust mite–induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. Journal of Allergy and Clinical Immunology, 2011, 128, 160-167.e4.	2.9	200
17	The "Classical" Ovalbumin Challenge Model of Asthma in Mice. Current Drug Targets, 2008, 9, 485-494.	2.1	198
18	Eosinophils Promote Allergic Disease of the Lung by Regulating CD4+ Th2 Lymphocyte Function. Journal of Immunology, 2001, 167, 3146-3155.	0.8	196

#	Article	IF	CITATIONS
19	Modeling Allergic Asthma in Mice. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 267-272.	2.9	188
20	Schistosoma mansoni infection in eosinophil lineage–ablated mice. Blood, 2006, 108, 2420-2427.	1.4	183
21	Regulation of Carcinogenesis by IL-5 and CCL11: A Potential Role for Eosinophils in Tumor Immune Surveillance. Journal of Immunology, 2007, 178, 4222-4229.	0.8	176
22	MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase–mediated suppression of histone deacetylase 2. Journal of Allergy and Clinical Immunology, 2017, 139, 519-532.	2.9	176
23	The Effect of IL-5 and Eotaxin Expression in the Lung on Eosinophil Trafficking and Degranulation and the Induction of Bronchial Hyperreactivity. Journal of Immunology, 2000, 164, 2142-2150.	0.8	171
24	Transgenic Expression of Bean α-Amylase Inhibitor in Peas Results in Altered Structure and Immunogenicity. Journal of Agricultural and Food Chemistry, 2005, 53, 9023-9030.	5.2	161
25	Type 2 Cytokines in the Pathogenesis of Sustained Airway Dysfunction and Airway Remodeling in Mice. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 860-867.	5.6	155
26	Expression of the Ym2 Lectin-binding Protein Is Dependent on Interleukin (IL)-4 and IL-13 Signal Transduction. Journal of Biological Chemistry, 2001, 276, 41969-41976.	3.4	152
27	Toll/IL-1 Signaling Is Critical for House Dust Mite–specific Th1 and Th2 Responses. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 883-893.	5.6	148
28	Immunopathogenesis of Experimental Ulcerative Colitis Is Mediated by Eosinophil Peroxidase. Journal of Immunology, 2004, 172, 5664-5675.	0.8	146
29	Inhibition of Inflammation and Remodeling by Roflumilast and Dexamethasone in Murine Chronic Asthma. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 349-355.	2.5	145
30	TLR7 Is Involved in Sequence-Specific Sensing of Single-Stranded RNAs in Human Macrophages. Journal of Immunology, 2008, 180, 2117-2124.	0.8	145
31	Interleukin-13 Mediates Airways Hyperreactivity through the IL-4 Receptor-Alpha Chain and STAT-6 Independently of IL-5 and Eotaxin. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 522-530.	2.9	144
32	Haemophilus influenzae Infection Drives IL-17-Mediated Neutrophilic Allergic Airways Disease. PLoS Pathogens, 2011, 7, e1002244.	4.7	144
33	IL-13 Induces Airways Hyperreactivity Independently of the IL-4Rα Chain in the Allergic Lung. Journal of Immunology, 2001, 167, 1683-1692.	0.8	137
34	Combined <i>Haemophilus influenzae</i> respiratory infection and allergic airways disease drives chronic infection and features of neutrophilic asthma. Thorax, 2012, 67, 588-599.	5.6	137
35	Effects of Anticytokine Therapy in a Mouse Model of Chronic Asthma. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 1043-1048.	5.6	132
36	NK Cell Deficiency Predisposes to Viral-Induced Th2-Type Allergic Inflammation via Epithelial-Derived IL-25. Journal of Immunology, 2010, 185, 4681-4690.	0.8	132

#	Article	IF	CITATIONS
37	Altered expression of microRNA in the airway wall in chronic asthma: miR-126 as a potential therapeutic target. BMC Pulmonary Medicine, 2011, 11, 29.	2.0	131
38	Cytokine/anti ytokine therapy – novel treatments for asthma?. British Journal of Pharmacology, 2011, 163, 81-95.	5.4	128
39	The E3 ubiquitin ligase midline 1 promotes allergen and rhinovirus-induced asthma by inhibiting protein phosphatase 2A activity. Nature Medicine, 2013, 19, 232-237.	30.7	127
40	Neonatal Chlamydial Infection Induces Mixed T-Cell Responses That Drive Allergic Airway Disease. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 556-564.	5.6	126
41	Targeting PI3K-p110α Suppresses Influenza Virus Infection in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1012-1023.	5.6	126
42	Macrolide therapy suppresses key features of experimental steroid-sensitive and steroid-insensitive asthma. Thorax, 2015, 70, 458-467.	5.6	123
43	Steroid-Resistant Neutrophilic Inflammation in a Mouse Model of an Acute Exacerbation of Asthma. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 543-550.	2.9	121
44	Polymorphisms in the IL 18 gene are associated with specific sensitization to common allergens and allergic rhinitis. Journal of Allergy and Clinical Immunology, 2003, 111, 117-122.	2.9	119
45	Mechanisms and treatments for severe, steroidâ€resistant allergic airway disease and asthma. Immunological Reviews, 2017, 278, 41-62.	6.0	119
46	Mucosal IL-12 gene delivery inhibits allergic airways disease and restores local antiviral immunity. European Journal of Immunology, 1998, 28, 413-423.	2.9	118
47	Critical link between TRAIL and CCL20 for the activation of TH2 cells and the expression of allergic airway disease. Nature Medicine, 2007, 13, 1308-1315.	30.7	112
48	IL-27/IFN-Î ³ Induce MyD88-Dependent Steroid-Resistant Airway Hyperresponsiveness by Inhibiting Glucocorticoid Signaling in Macrophages. Journal of Immunology, 2010, 185, 4401-4409.	0.8	109
49	The IL-3/IL-5/GM-CSF Common \hat{l}^2 Receptor Plays a Pivotal Role in the Regulation of Th2 Immunity and Allergic Airway Inflammation. Journal of Immunology, 2008, 180, 1199-1206.	0.8	108
50	Modeling <scp>T_H</scp> 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunological Reviews, 2017, 278, 20-40.	6.0	107
51	Effect of steroids on βâ€adrenoceptorâ€mediated relaxation of pig bronchus. British Journal of Pharmacology, 1983, 78, 441-445.	5.4	106
52	Eotaxin-2 and IL-5 cooperate in the lung to regulate IL-13 production and airway eosinophilia and hyperreactivity. Journal of Allergy and Clinical Immunology, 2003, 112, 935-943.	2.9	106
53	Th22 Cells Form a Distinct Th Lineage from Th17 Cells In Vitro with Unique Transcriptional Properties and Tbet-Dependent Th1 Plasticity. Journal of Immunology, 2017, 198, 2182-2190.	0.8	106
54	Early-life chlamydial lung infection enhances allergic airways disease through age-dependent differences in immunopathology. Journal of Allergy and Clinical Immunology, 2010, 125, 617-625.e6.	2.9	100

#	Article	lF	CITATIONS
55	Impaired resistance in early secondary Nippostrongylus brasiliensis infections in mice with defective eosinophilopoeisis. International Journal for Parasitology, 2007, 37, 1367-1378.	3.1	98
56	Interleukin-5 and eosinophils induce airway damage and bronchial hyperreactivity during allergic airway inflammation in BALB/c mice. Immunology and Cell Biology, 1997, 75, 284-288.	2.3	97
57	The emerging role of micro <scp>RNA</scp> s in regulating immune and inflammatory responses in the lung. Immunological Reviews, 2013, 253, 198-215.	6.0	97
58	Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nature Immunology, 2021, 22, 851-864.	14.5	97
59	MicroRNA-125a and -b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD. JCI Insight, 2017, 2, e90443.	5.0	95
60	Inhibition of Arginase I Activity by RNA Interference Attenuates IL-13-Induced Airways Hyperresponsiveness. Journal of Immunology, 2006, 177, 5595-5603.	0.8	94
61	Toll-like receptor 7 governs interferon and inflammatory responses to rhinovirus and is suppressed by IL-5-induced lung eosinophilia. Thorax, 2015, 70, 854-861.	5.6	90
62	Negative regulation of eosinophil recruitment to the lung by the chemokine monokine induced by IFN-Î ³ (Mig, CXCL9). Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1987-1992.	7.1	89
63	Emerging roles of pulmonary macrophages in driving the development of severe asthma. Journal of Leukocyte Biology, 2012, 91, 557-569.	3.3	87
64	Enterocyte Expression of the Eotaxin and Interleukin-5 Transgenes Induces Compartmentalized Dysregulation of Eosinophil Trafficking. Journal of Biological Chemistry, 2002, 277, 4406-4412.	3.4	86
65	MicroRNA-9 regulates steroid-resistant airway hyperresponsiveness by reducing protein phosphatase 2A activity. Journal of Allergy and Clinical Immunology, 2015, 136, 462-473.	2.9	84
66	Chlamydial Respiratory Infection during Allergen Sensitization Drives Neutrophilic Allergic Airways Disease. Journal of Immunology, 2010, 184, 4159-4169.	0.8	83
67	Chemokines and chemokine receptors: their role in allergic airway disease. Journal of Clinical Immunology, 1999, 19, 250-265.	3.8	82
68	Dissociation of Inflammatory and Epithelial Responses in a Murine Model of Chronic Asthma. Laboratory Investigation, 2000, 80, 655-662.	3.7	82
69	Ym1/2 Promotes Th2 Cytokine Expression by Inhibiting 12/15(<i>S</i>)-Lipoxygenase: Identification of a Novel Pathway for Regulating Allergic Inflammation. Journal of Immunology, 2009, 182, 5393-5399.	0.8	82
70	Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c. Journal of Pathology, 2017, 243, 510-523.	4.5	81
71	Plasmacytoid Dendritic Cells Promote Host Defense against Acute Pneumovirus Infection via the TLR7–MyD88-Dependent Signaling Pathway. Journal of Immunology, 2011, 186, 5938-5948.	0.8	80
72	Active Vaccination Against IL-5 Bypasses Immunological Tolerance and Ameliorates Experimental Asthma. Journal of Immunology, 2001, 167, 3792-3799.	0.8	79

#	Article	IF	CITATIONS
73	Pathogenesis of Steroid-Resistant Airway Hyperresponsiveness: Interaction between IFN-γ and TLR4/MyD88 Pathways. Journal of Immunology, 2009, 182, 5107-5115.	0.8	78
74	Importance of Mast Cell Prss31/Transmembrane Tryptase/Tryptase-Î ³ in Lung Function and Experimental Chronic Obstructive Pulmonary Disease and Colitis. Journal of Biological Chemistry, 2014, 289, 18214-18227.	3.4	78
75	Regulation of MicroRNA by Antagomirs. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 8-12.	2.9	76
76	Th2 cytokine antagonists: potential treatments for severe asthma. Expert Opinion on Investigational Drugs, 2013, 22, 49-69.	4.1	76
77	Interferon-γ as a Possible Target in Chronic Asthma. Inflammation and Allergy: Drug Targets, 2006, 5, 253-256.	1.8	75
78	Comparative Roles of IL-4, IL-13, and IL-4Rα in Dendritic Cell Maturation and CD4+ Th2 Cell Function. Journal of Immunology, 2007, 178, 219-227.	0.8	74
79	Altered Zinc Homeostasis and Caspase-3 Activity in Murine Allergic Airway Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 286-296.	2.9	73
80	Biochemical and Functional Characterization of Human Transmembrane Tryptase (TMT)/Tryptase γ. Journal of Biological Chemistry, 2002, 277, 41906-41915.	3.4	72
81	Interleukins-4, -5, and -13: emerging therapeutic targets in allergic disease. , 2002, 94, 253-264.		72
82	Components of <i>Streptococcus pneumoniae</i> Suppress Allergic Airways Disease and NKT Cells by Inducing Regulatory T Cells. Journal of Immunology, 2012, 188, 4611-4620.	0.8	72
83	Interleukin-13 Promotes Susceptibility to Chlamydial Infection of the Respiratory and Genital Tracts. PLoS Pathogens, 2011, 7, e1001339.	4.7	68
84	Potential Therapeutic Targets for Steroid-Resistant Asthma. Current Drug Targets, 2010, 11, 957-970.	2.1	66
85	Reduction of Tumstatin in Asthmatic Airways Contributes to Angiogenesis, Inflammation, and Hyperresponsiveness. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 106-115.	5.6	65
86	Interleukin-5 and eosinophils as therapeutic targets for asthma. Trends in Molecular Medicine, 2002, 8, 162-167.	6.7	64
87	Physiological concentrations of transforming growth factor β1 selectively inhibit human dendritic cell function. International Immunopharmacology, 2007, 7, 1924-1933.	3.8	64
88	Inhibition of allergic airways disease by immunomodulatory therapy with whole killed Streptococcus pneumoniae. Vaccine, 2007, 25, 8154-8162.	3.8	63
89	Targeting MicroRNA Function in Respiratory Diseases: Mini-Review. Frontiers in Physiology, 2016, 7, 21.	2.8	63
90	Early-life viral infection and allergen exposure interact to induce an asthmatic phenotype in mice. Respiratory Research, 2010, 11, 14.	3.6	62

#	Article	IF	CITATIONS
91	Antagonism of miR-328 Increases the Antimicrobial Function of Macrophages and Neutrophils and Rapid Clearance of Non-typeable Haemophilus Influenzae (NTHi) from Infected Lung. PLoS Pathogens, 2015, 11, e1004549.	4.7	62
92	<i>Chlamydia muridarum</i> Infection Subverts Dendritic Cell Function to Promote Th2 Immunity and Airways Hyperreactivity. Journal of Immunology, 2008, 180, 2225-2232.	0.8	61
93	TLR2, but Not TLR4, Is Required for Effective Host Defence against Chlamydia Respiratory Tract Infection in Early Life. PLoS ONE, 2012, 7, e39460.	2.5	61
94	Pneumococcal conjugate vaccine-induced regulatory T cells suppress the development of allergic airways disease. Thorax, 2010, 65, 1053-1060.	5.6	59
95	Toll-like receptor 7 gene deficiency and early-life Pneumovirus infection interact to predispose toward the development of asthma-like pathology in mice. Journal of Allergy and Clinical Immunology, 2013, 131, 1331-1339.e10.	2.9	59
96	MicroRNA Expression Is Altered in an Ovalbumin-Induced Asthma Model and Targeting miR-155 with Antagomirs Reveals Cellular Specificity. PLoS ONE, 2015, 10, e0144810.	2.5	58
97	Fibulin-1 Is Increased in Asthma – A Novel Mediator of Airway Remodeling?. PLoS ONE, 2010, 5, e13360.	2.5	55
98	Roles for T/B lymphocytes and ILC2s in experimental chronic obstructive pulmonary disease. Journal of Leukocyte Biology, 2018, 105, 143-150.	3.3	55
99	Airway Hyperreactivity in Exacerbation of Chronic Asthma Is Independent of Eosinophilic Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 565-570.	2.9	54
100	Mouse models of severe asthma: <scp>U</scp> nderstanding the mechanisms of steroid resistance, tissue remodelling and disease exacerbation. Respirology, 2017, 22, 874-885.	2.3	54
101	IL-22 and its receptors are increased in human and experimental COPD and contribute to pathogenesis. European Respiratory Journal, 2019, 54, 1800174.	6.7	54
102	A microRNA-21–mediated SATB1/S100A9/NF-κB axis promotes chronic obstructive pulmonary disease pathogenesis. Science Translational Medicine, 2021, 13, eaav7223.	12.4	54
103	TNF-α and Macrophages Are Critical for Respiratory Syncytial Virus–Induced Exacerbations in a Mouse Model of Allergic Airways Disease. Journal of Immunology, 2016, 196, 3547-3558.	0.8	52
104	Emerging role of tumour necrosis factorâ€related apoptosisâ€inducing ligand (TRAIL) as a key regulator of inflammatory responses. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 1049-1053.	1.9	51
105	CD4+ T-Lymphocytes Regulate Airway Remodeling and Hyper-Reactivity in a Mouse Model of Chronic Asthma. Laboratory Investigation, 2002, 82, 455-462.	3.7	50
106	A Plant-Based Allergy Vaccine Suppresses Experimental Asthma Via an IFN-Î ³ and CD4+CD45RBlow T Cell-Dependent Mechanism. Journal of Immunology, 2003, 171, 2116-2126.	0.8	50
107	Respiratory viral infection, epithelial cytokines, and innate lymphoid cells in asthma exacerbations. Journal of Leukocyte Biology, 2014, 96, 391-396.	3.3	50
108	Eosinophil degranulation in the allergic lung of mice primarily occurs in the airway lumen. Journal of Leukocyte Biology, 2004, 75, 1001-1009.	3.3	49

#	Article	IF	CITATIONS
109	The contribution of tollâ€like receptors to the pathogenesis of asthma. Immunology and Cell Biology, 2007, 85, 463-470.	2.3	49
110	Murine model of chronic human asthma. Immunology and Cell Biology, 2001, 79, 141-144.	2.3	48
111	ICAM-1-dependent pathways regulate colonic eosinophilic inflammation. Journal of Leukocyte Biology, 2006, 80, 330-341.	3.3	48
112	Interleukin-13 (IL-13)/IL-13 Receptor α1 (IL-13Rα1) Signaling Regulates Intestinal Epithelial Cystic Fibrosis Transmembrane Conductance Regulator Channel-dependent Clâ~ Secretion. Journal of Biological Chemistry, 2011, 286, 13357-13369.	3.4	48
113	Regulation of Eosinophil Migration and Th2 Cell Function by IL-5 and Eotaxin. Inflammation and Allergy: Drug Targets, 2003, 2, 169-174.	3.1	48
114	Dietary lycopene supplementation suppresses Th2 responses and lung eosinophilia in a mouse model of allergic asthma. Journal of Nutritional Biochemistry, 2011, 22, 95-100.	4.2	47
115	Potential mechanisms regulating pulmonary pathology in inflammatory bowel disease. Journal of Leukocyte Biology, 2015, 98, 727-737.	3.3	47
116	Chemokine and cytokine cooperativity: Eosinophil migration in the asthmatic response. Immunology and Cell Biology, 2000, 78, 415-422.	2.3	46
117	IL-6 Drives Neutrophil-Mediated Pulmonary Inflammation Associated with Bacteremia in Murine Models of Colitis. American Journal of Pathology, 2018, 188, 1625-1639.	3.8	46
118	A critical role for donor-derived IL-22 in cutaneous chronic GVHD. American Journal of Transplantation, 2018, 18, 810-820.	4.7	45
119	New insights into the generation of Th2 immunity and potential therapeutic targets for the treatment of asthma. Current Opinion in Allergy and Clinical Immunology, 2011, 11, 39-45.	2.3	44
120	Are mouse models of asthma appropriate for investigating the pathogenesis of airway hyper-responsiveness?. Frontiers in Physiology, 2012, 3, 312.	2.8	44
121	PAI-1 augments mucosal damage in colitis. Science Translational Medicine, 2019, 11, .	12.4	44
122	The role of interleukin-5 (IL-5) in vivo: studies with IL-5 deficient mice. Memorias Do Instituto Oswaldo Cruz, 1997, 92, 63-68.	1.6	44
123	Expression of kinin B1 and B2 receptors in immature, monocyte-derived dendritic cells and bradykinin-mediated increase in intracellular Ca2+ and cell migration. Journal of Leukocyte Biology, 2007, 81, 1445-1454.	3.3	43
124	Platelet activating factor receptor regulates colitis-induced pulmonary inflammation through the NLRP3 inflammasome. Mucosal Immunology, 2019, 12, 862-873.	6.0	43
125	Single-cell transcriptomic analysis reveals the immune landscape of lung in steroid-resistant asthma exacerbation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42
126	Alveolar Macrophages Stimulate Enhanced Cytokine Production by Pulmonary CD4+ T-Lymphocytes in an Exacerbation of Murine Chronic Asthma. American Journal of Pathology, 2010, 177, 1657-1664.	3.8	40

#	Article	IF	CITATIONS
127	Crucial role for lung iron level and regulation in the pathogenesis and severity of asthma. European Respiratory Journal, 2020, 55, 1901340.	6.7	40
128	Regulatory T Cells Prevent Inducible BALT Formation by Dampening Neutrophilic Inflammation. Journal of Immunology, 2015, 194, 4567-4576.	0.8	38
129	Mouse models of acute exacerbations of allergic asthma. Respirology, 2016, 21, 842-849.	2.3	37
130	Toll-like receptor 2 and 4 have Opposing Roles in the Pathogenesis of Cigarette Smoke-induced Chronic Obstructive Pulmonary Disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, ajplung.00154.2.	2.9	37
131	Strain-dependent resistance to allergen-induced lung pathophysiology in mice correlates with rate of apoptosis of lung-derived eosinophils. Journal of Leukocyte Biology, 2007, 81, 1362-1373.	3.3	36
132	MicroRNA-487b Is a Negative Regulator of Macrophage Activation by Targeting IL-33 Production. Journal of Immunology, 2016, 196, 3421-3428.	0.8	36
133	Vitamin E isoform Î ³ -tocotrienol protects against emphysema in cigarette smoke-induced COPD. Free Radical Biology and Medicine, 2017, 110, 332-344.	2.9	36
134	Eosinophils and COVID-19: diagnosis, prognosis, and vaccination strategies. Seminars in Immunopathology, 2021, 43, 383-392.	6.1	36
135	Antigen-specific production of interleukin (IL)-13 and IL-5 cooperate to mediate IL-4Rα-independent airway hyperreactivity. European Journal of Immunology, 2003, 33, 3377-3385.	2.9	34
136	Potential Role of MicroRNAs in the Regulation of Antiviral Responses to Influenza Infection. Frontiers in Immunology, 2018, 9, 1541.	4.8	34
137	Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Regulates Hallmark Features of Airways Remodeling in Allergic Airways Disease. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 86-93.	2.9	33
138	Dual Proinflammatory and Antiviral Properties of Pulmonary Eosinophils in Respiratory Syncytial Virus Vaccine-Enhanced Disease. Journal of Virology, 2015, 89, 1564-1578.	3.4	33
139	MicroRNAs as therapeutics for future drug delivery systems in treatment of lung diseases. Drug Delivery and Translational Research, 2017, 7, 168-178.	5.8	33
140	Polymorphisms in IL-4Rα Correlate with Airways Hyperreactivity, Eosinophilia, and Ym Protein Expression in Allergic IL-13â^'/â^' Mice. Journal of Immunology, 2004, 172, 1092-1098.	0.8	32
141	Epigenetic changes in childhood asthma. DMM Disease Models and Mechanisms, 2009, 2, 549-553.	2.4	32
142	Salmeterol attenuates chemotactic responses in rhinovirus-induced exacerbation of allergic airways diseaseÂby modulating protein phosphatase 2A. Journal of Allergy and Clinical Immunology, 2014, 133, 1720-1727.	2.9	32
143	Activation of Olfactory Receptors on Mouse Pulmonary Macrophages Promotes Monocyte Chemotactic Protein-1 Production. PLoS ONE, 2013, 8, e80148.	2.5	32
144	Cellular and molecular regulation of eosinophil trafficking to the lung. Immunology and Cell Biology, 1998, 76, 454-460.	2.3	31

#	Article	IF	CITATIONS
145	Transcription of the Interferon γ (IFN-γ)-inducible Chemokine Mig in IFN-γ-deficient Mice. Journal of Biological Chemistry, 2001, 276, 7568-7574.	3.4	31
146	A Critical Role for the CXCL3/CXCL5/CXCR2 Neutrophilic Chemotactic Axis in the Regulation of Type 2 Responses in a Model of Rhinoviral-Induced Asthma Exacerbation. Journal of Immunology, 2020, 205, 2468-2478.	0.8	31
147	Eotaxin Expression by Epithelial Cells and Plasma Cells in Chronic Asthma. Laboratory Investigation, 2002, 82, 495-504.	3.7	30
148	Targeting Eosinophils in Asthma. Current Molecular Medicine, 2008, 8, 585-590.	1.3	30
149	Eosinophils from Lineage-Ablated ΔdblGATA Bone Marrow Progenitors: The dblGATA Enhancer in the Promoter of GATA-1 Is Not Essential for Differentiation Ex Vivo. Journal of Immunology, 2007, 179, 1693-1699.	0.8	29
150	Glutathione Transferase P1. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 1202-1210.	5.6	29
151	Quantitative Reduction of the TCR Adapter Protein SLP-76 Unbalances Immunity and Immune Regulation. Journal of Immunology, 2015, 194, 2587-2595.	0.8	28
152	Cytokines as targets for the inhibition of eosinophilic inflammation. , 1997, 74, 259-283.		27
153	Allergic Networks Regulating Eosinophilia. American Journal of Respiratory Cell and Molecular Biology, 1999, 21, 451-454.	2.9	26
154	Interferon-γ , Pulmonary Macrophages and Airway Responsiveness in Asthma. Inflammation and Allergy: Drug Targets, 2012, 11, 292-297.	1.8	26
155	TLR2, TLR4 AND MyD88 Mediate Allergic Airway Disease (AAD) and Streptococcus pneumoniae-Induced Suppression of AAD. PLoS ONE, 2016, 11, e0156402.	2.5	26
156	Experimental analysis of eosinophil-associated gastrointestinal diseases. Current Opinion in Allergy and Clinical Immunology, 2002, 2, 239-248.	2.3	25
157	Chemokines in eosinophil-associated gastrointestinal disorders. Current Allergy and Asthma Reports, 2004, 4, 74-82.	5.3	25
158	Pulmonary Eosinophils and Their Role in Immunopathologic Responses to Formalin-Inactivated Pneumonia Virus of Mice. Journal of Immunology, 2009, 183, 604-612.	0.8	25
159	Production and Differentiation of Myeloid Cells Driven by Proinflammatory Cytokines in Response to Acute Pneumovirus Infection in Mice. Journal of Immunology, 2014, 193, 4072-4082.	0.8	25
160	Group 2 Innate Lymphoid Cells Are Redundant in Experimental Renal Ischemia-Reperfusion Injury. Frontiers in Immunology, 2019, 10, 826.	4.8	25
161	Identification of IFN-γ and IL-27 as Critical Regulators of Respiratory Syncytial Virus–Induced Exacerbation of Allergic Airways Disease in a Mouse Model. Journal of Immunology, 2018, 200, 237-247.	0.8	24
162	Mechanistic analysis of experimental food allergen-induced cutaneous reactions. Journal of Leukocyte Biology, 2006, 80, 258-266.	3.3	23

#	Article	IF	CITATIONS
163	Absence of Toll–IL-1 Receptor 8/Single Immunoglobulin IL-1 Receptor–Related Molecule Reduces House Dust Mite–Induced Allergic Airway Inflammation in Mice. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 481-490.	2.9	23
164	Bromodomain and Extra Terminal (BET) Inhibitor Suppresses Macrophage-Driven Steroid-Resistant Exacerbations of Airway Hyper-Responsiveness and Inflammation. PLoS ONE, 2016, 11, e0163392.	2.5	23
165	T helper-2 immunity regulates bronchial hyperresponsiveness in eosinophil-associated gastrointestinal disease in mice. Gastroenterology, 2004, 127, 105-118.	1.3	22
166	Lipopolysaccharide induces steroidâ€resistant exacerbations in a mouse model of allergic airway disease collectively through ILâ€13 and pulmonary macrophage activation. Clinical and Experimental Allergy, 2020, 50, 82-94.	2.9	22
167	Interferon-inducible chemokines and immunity to poxvirus infections. Immunological Reviews, 2000, 177, 127-133.	6.0	21
168	MicroRNA: Potential biomarkers and therapeutic targets for allergic asthma?. Annals of Medicine, 2014, 46, 633-639.	3.8	21
169	Neutrophilic asthma: welcome back!. European Respiratory Journal, 2019, 54, 1901846.	6.7	21
170	Cellular and molecular mechanisms involved in the regulation of eosinophil traffickingin vivo. , 1996, 16, 407-432.		20
171	Expression of kinin receptors on eosinophils: comparison of asthmatic patients and healthy subjects. Journal of Leukocyte Biology, 2009, 85, 544-552.	3.3	20
172	Pneumococcal Components Induce Regulatory T Cells That Attenuate the Development of Allergic Airways Disease by Deviating and Suppressing the Immune Response to Allergen. Journal of Immunology, 2013, 191, 4112-4120.	0.8	20
173	TRAIL signaling is proinflammatory and proviral in a murine model of rhinovirus 1B infection. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L89-L99.	2.9	19
174	Development of asthmatic inflammation in mice following early-life exposure to ambient environmental particulates and chronic allergen challenge. DMM Disease Models and Mechanisms, 2013, 6, 479-88.	2.4	18
175	Epigenetic changes associated with disease progression in a mouse model of childhood allergic asthma. DMM Disease Models and Mechanisms, 2013, 6, 993-1000.	2.4	18
176	Using multiple online databases to help identify micro <scp>RNA</scp> s regulating the airway epithelial cell response to a virusâ€like stimulus. Respirology, 2015, 20, 1206-1212.	2.3	18
177	Stop Press: Eosinophils Drafted to Join the Th17 Team. Immunity, 2015, 43, 7-9.	14.3	18
178	Preventive effect of N-acetylcysteine in a mouse model of steroid resistant acute exacerbation of asthma. EXCLI Journal, 2013, 12, 184-92.	0.7	18
179	Inhibiting AKT Phosphorylation Employing Non-Cytotoxic Anthraquinones Ameliorates TH2 Mediated Allergic Airways Disease and Rhinovirus Exacerbation. PLoS ONE, 2013, 8, e79565.	2.5	17
180	CSTO1â€l is an upstream suppressor of M2 macrophage skewing and HIFâ€lαâ€induced eosinophilic airway inflammation. Clinical and Experimental Allergy, 2020, 50, 609-624.	2.9	17

#	Article	IF	CITATIONS
181	miR-122 promotes virus-induced lung disease by targeting SOCS1. JCI Insight, 2021, 6, .	5.0	17
182	Expression Profiling of Differentiating Eosinophils in Bone Marrow Cultures Predicts Functional Links between MicroRNAs and Their Target mRNAs. PLoS ONE, 2014, 9, e97537.	2.5	17
183	The metabolism of d-myo-inositol 1,4,5-trisphosphate and d-myo-inositol 1,3,4,5-tetrakisphosphate by porcine skeletal muscle. FEBS Journal, 1994, 222, 955-964.	0.2	16
184	Identification of MicroRNAs Regulating the Developmental Pathways of Bone Marrow Derived Mast Cells. PLoS ONE, 2014, 9, e98139.	2.5	16
185	Differences in pulmonary group 2 innate lymphoid cells are dependent on mouse age, sex and strain. Immunology and Cell Biology, 2021, 99, 542-551.	2.3	16
186	Interleukin-4 and interleukin-5 as targets for the inhibition of eosinophilic inflammation and allergic airways hyperreactivity. Memorias Do Instituto Oswaldo Cruz, 1997, 92, 55-61.	1.6	15
187	Molecular Cloning of the cDNA Encoding Human Skeletal Muscle Triadin and Its Localisation to Chromosome 6q22-6q23. FEBS Journal, 1995, 233, 258-265.	0.2	13
188	Antiviral potential of chemokines. BioEssays, 2001, 23, 428-435.	2.5	13
189	T-helper 22 cells develop as a distinct lineage from Th17 cells during bacterial infection and phenotypic stability is regulated by T-bet. Mucosal Immunology, 2021, 14, 1077-1087.	6.0	13
190	Identification of the microRNA networks contributing to macrophage differentiation and function. Oncotarget, 2016, 7, 28806-28820.	1.8	13
191	Antigen-Specific T-Cell Responses to a Recombinant Fowlpox Virus Are Dependent on MyD88 and Interleukin-18 and Independent of Toll-Like Receptor 7 (TLR7)- and TLR9-Mediated Innate Immune Recognition. Journal of Virology, 2011, 85, 3385-3396.	3.4	12
192	The role of phosphoinositide metabolism in Ca2+ signalling of skeletal muscle cells. International Journal of Biochemistry & Cell Biology, 1994, 26, 449-468.	0.5	11
193	TRAIL deficiency and PP2A activation with salmeterol ameliorates egg allergen-driven eosinophilic esophagitis. American Journal of Physiology - Renal Physiology, 2016, 311, G998-G1008.	3.4	11
194	Enhanced Pro-Inflammatory Response of Macrophages to Interleukin-33 in an Allergic Environment. International Archives of Allergy and Immunology, 2018, 176, 74-82.	2.1	11
195	<scp>ILâ€17A</scp> is a common and critical driver of impaired lung function and immunopathology induced by influenza virus, rhinovirus and respiratory syncytial virus. Respirology, 2021, 26, 1049-1059.	2.3	11
196	MicroRNA Function in Mast Cell Biology: Protocols to Characterize and Modulate MicroRNA Expression. Methods in Molecular Biology, 2015, 1220, 287-304.	0.9	11
197	Malignant hyperpyrexia. International Journal of Biochemistry & Cell Biology, 1990, 22, 1217-1222.	0.5	10
198	Maternal Particulate Matter Exposure Impairs Lung Health and Is Associated with Mitochondrial Damage. Antioxidants, 2021, 10, 1029.	5.1	10

#	Article	IF	CITATIONS
199	An Alternate STAT6-Independent Pathway Promotes Eosinophil Influx into Blood during Allergic Airway Inflammation. PLoS ONE, 2011, 6, e17766.	2.5	10
200	Effect of hypothermia on β ₁ â€adrenoceptorâ€mediated relaxation of pig bronchus. British Journal of Pharmacology, 1983, 80, 699-702.	5.4	8
201	GPR109A deficiency promotes ILâ€33 overproduction and type 2 immune response in food allergy in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2613-2616.	5.7	8
202	Airway and parenchymal transcriptomics in a novel model of asthma and COPD overlap. Journal of Allergy and Clinical Immunology, 2022, 150, 817-829.e6.	2.9	8
203	Osteoblasts Are Rapidly Ablated by Virus-Induced Systemic Inflammation following Lymphocytic Choriomeningitis Virus or Pneumonia Virus of Mice Infection in Mice. Journal of Immunology, 2018, 200, 632-642.	0.8	7
204	Biologics or immunotherapeutics for asthma?. Pharmacological Research, 2020, 158, 104782.	7.1	7
205	31P-NMR spectroscopy: The metabolic profile of malignant hyperpyrexic porcine skeletal muscle. Muscle and Nerve, 1989, 12, 390-396.	2.2	6
206	Characterization of the terminal cisternae and longitudinal tubules of sarcoplasmic reticulum from malignant hyperpyrexia susceptible porcine skeletal muscle. International Journal of Biochemistry & Cell Biology, 1989, 21, 1119-1126.	0.5	6
207	Interleukin-5 does not influence differential transcription of transmembrane and soluble isoforms of IL-5Rα in vivo. European Journal of Haematology, 2006, 77, 181-190.	2.2	6
208	TH9 cells: In front and beyond TH2. Journal of Allergy and Clinical Immunology, 2012, 129, 1011-1013.	2.9	6
209	Interleukin-17 contributes to Ross River virus-induced arthritis and myositis. PLoS Pathogens, 2022, 18, e1010185.	4.7	6
210	Asthma diagnosis: MicroRNAs to the rescue. Journal of Allergy and Clinical Immunology, 2016, 137, 1447-1448.	2.9	5
211	Targeting MicroRNAs: Promising Future Therapeutics in the Treatment of Allergic Airway Disease. Critical Reviews in Eukaryotic Gene Expression, 2018, 28, 125-127.	0.9	5
212	PIR-B Regulates CD4+ IL17a+ T-Cell Survival and Restricts T-Cell–Dependent Intestinal Inflammatory Responses. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1479-1502.	4.5	5
213	Mucosal IL-12 gene delivery inhibits allergic airways disease and restores local antiviral immunity. European Journal of Immunology, 1998, 28, 413-423.	2.9	5
214	The effect of calcium channel antagonists and bay K 8644 on calcium fluxes of malignant hyperpyrexia-susceptible muscle. International Journal of Biochemistry & Cell Biology, 1993, 25, 495-504.	0.5	4
215	ILâ€⊋1 comes of age. Immunology and Cell Biology, 2009, 87, 359-360.	2.3	4
216	Reply to Eosinophil cytolysis and release of cell-free granules. Nature Reviews Immunology, 2013, 13, 902-902.	22.7	4

#	Article	IF	CITATIONS
217	Clinical Translation of Basic Science in Asthma. New England Journal of Medicine, 2021, 385, 1714-1717.	27.0	4
218	Deficiency in the zinc transporter ZIP8 impairs epithelia renewal and enhances lung fibrosis. Journal of Clinical Investigation, 2022, 132, .	8.2	4
219	In vivo targeting of miRâ€223 in experimental eosinophilic oesophagitis. Clinical and Translational Immunology, 2020, 9, e1210.	3.8	3
220	Employment of microRNA profiles and RNA interference and antagomirs for the characterization and treatment of respiratory disease. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 325-332.	0.5	2
221	Asthma 2014: from monoclonals to the microbiome. Lancet Respiratory Medicine, the, 2014, 2, 956-958.	10.7	2
222	Uridine diphosphate–glucose/P2Y14R axis is a nonchemokine pathway that selectively promotes eosinophil accumulation. Journal of Clinical Investigation, 2021, 131, .	8.2	2
223	Cellular and molecular mechanisms involved in the regulation of eosinophil trafficking in vivo. Medicinal Research Reviews, 1996, 16, 407-432.	10.5	2
224	Proteomic Analysis Reveals a Novel Therapeutic Strategy Using Fludarabine for Steroid-Resistant Asthma Exacerbation. Frontiers in Immunology, 2022, 13, 805558.	4.8	1
225	Response. Chest, 2020, 158, 828-829.	0.8	0
226	Transcriptomic drug-response gene signatures are informative for the stratification of patients for clinical trials. Journal of Allergy and Clinical Immunology, 2022, 149, 55-57.	2.9	0
227	Corticotrophin Releasing Hormone Regulates NLRP6 and Disrupts Mucosal Homeostasis in Functional Dyspepsia. FASEB Journal, 2018, 32, 406.6.	0.5	0
228	Reply to Dutta etÂal.: Understanding scRNA-seq data in the context of the tissue microenvironment requires clinical relevance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2109159118.	7.1	0