
Lois L Hoyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2790981/publications.pdf Version: 2024-02-01

LOIS HOVED

#	Article	IF	CITATIONS
1	Peering Into Candida albicans Pir Protein Function and Comparative Genomics of the Pir Family. Frontiers in Cellular and Infection Microbiology, 2022, 12, 836632.	3.9	2
2	ALS1 Deletion Increases the Proportion of Small Cells in a Candida albicans Culture Population: Hypothesizing a Novel Role for Als1. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	4
3	Candida albicans evades NK cell elimination via binding of Agglutinin-Like Sequence proteins to the checkpoint receptor TIGIT. Nature Communications, 2022, 13, 2463.	12.8	10
4	Development and validation of monoclonal antibodies specific for Candida albicans Als2, Als9-1, and Als9-2. PLoS ONE, 2022, 17, e0269681.	2.5	1
5	Effect of light exposure on growth rate of veterinary clinical dermatophyte isolates. Veterinary Dermatology, 2021, 32, 234.	1.2	2
6	Using Genomics to Shape the Definition of the Agglutinin-Like Sequence (ALS) Family in the Saccharomycetales. Frontiers in Cellular and Infection Microbiology, 2021, 11, 794529.	3.9	9
7	Resolving the taxonomy of emerging zoonotic pathogens in the Trichophyton benhamiae complex. Fungal Diversity, 2020, 104, 333-387.	12.3	32
8	Pursuing Advances in DNA Sequencing Technology to Solve a Complex Genomic Jigsaw Puzzle: The Agglutinin-Like Sequence (ALS) Genes of Candida tropicalis. Frontiers in Microbiology, 2020, 11, 594531.	3.5	9
9	Characterization of the Candida orthopsilosis agglutinin-like sequence (ALS) genes. PLoS ONE, 2019, 14, e0215912.	2.5	16
10	Agglutinin-Like Sequence (ALS) Genes in the Candida parapsilosis Species Complex: Blurring the Boundaries Between Gene Families That Encode Cell-Wall Proteins. Frontiers in Microbiology, 2019, 10, 781.	3.5	24
11	Candida albicans Agglutinin-Like Sequence (Als) Family Vignettes: A Review of Als Protein Structure and Function. Frontiers in Microbiology, 2016, 7, 280.	3.5	150
12	The <i>Candida albicans</i> agglutinin-like sequence family of adhesins: functional insights gained from structural analysis. Future Microbiology, 2015, 10, 1635-1548.	2.0	27
13	A proposed mechanism for the interaction between the Candida albicans Als3 adhesin and streptococcal cell wall proteins. Frontiers in Microbiology, 2014, 5, 564.	3.5	26
14	The Peptide-binding Cavity Is Essential for Als3-mediated Adhesion of Candida albicans to Human Cells. Journal of Biological Chemistry, 2014, 289, 18401-18412.	3.4	69
15	Frequent isolation of <i><scp>A</scp>rthroderma benhamiae</i> from dogs with dermatophytosis. Veterinary Dermatology, 2014, 25, 39.	1.2	24
16	A piglet model for studyingCandida albicanscolonization of the human oro-gastrointestinal tract. FEMS Microbiology Letters, 2014, 357, 10-15.	1.8	8
17	Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology (United Kingdom), 2012, 158, 2975-2986.	1.8	188
18	A monoclonal antibody specific forCandida albicansAls4 demonstrates overlapping localization of Als family proteins on the fungal cell surface and highlights differences between Als localizationin vitroandin vivo. FEMS Immunology and Medical Microbiology, 2012, 64, 321-333.	2.7	22

LOIS L HOYER

#	Article	IF	CITATIONS
19	Evaluation of the Role of Candida albicans Agglutinin-Like Sequence (Als) Proteins in Human Oral Epithelial Cell Interactions. PLoS ONE, 2012, 7, e33362.	2.5	93
20	<i>ALS51</i> , a newly discovered gene in the <i>Candida albicans</i> ALS family, created by intergenic recombination: analysis of the gene and protein, and implications for evolution of microbial gene families. FEMS Immunology and Medical Microbiology, 2011, 61, 245-257.	2.7	27
21	Structural basis for the broad specificity to host-cell ligands by the pathogenic fungus <i>Candida albicans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15775-15779.	7.1	78
22	Heterogeneous distribution of Candida albicans cell-surface antigens demonstrated with an Als1-specific monoclonal antibody. Microbiology (United Kingdom), 2010, 156, 3645-3659.	1.8	36
23	Heterogeneity of Vaginal Microbial Communities within Individuals. Journal of Clinical Microbiology, 2009, 47, 1181-1189.	3.9	156
24	PREVALENCE AND ANTIBIOTIC-RESISTANCE CHARACTERISTICS OF ENTEROCOCCUS SPP. ISOLATED FROM FREE-LIVING AND CAPTIVE RAPTORS IN CENTRAL ILLINOIS. Journal of Wildlife Diseases, 2009, 45, 302-313.	0.8	43
25	Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 2009, 459, 657-662.	27.8	963
26	Recognition of <i>Candida albicans</i> Als3 by the germ tube-specific monoclonal antibody 3D9.3. FEMS Immunology and Medical Microbiology, 2009, 55, 314-323.	2.7	19
27	Monoclonal antibodies specific for Candida albicans Als3 that immunolabel fungal cells in vitro and in vivo and block adhesion to host surfaces. Journal of Microbiological Methods, 2009, 78, 71-78.	1.6	63
28	Structural studies ofCandida albicanspathogenicity factors: ALS adhesins family. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s22-s23.	0.3	0
29	Interactions between pathogenic fungi and human epithelial and endothelial surfaces. Current Fungal Infection Reports, 2008, 2, 165-171.	2.6	0
30	Inhibition of <i>Candida albicans</i> adhesion by recombinant human antibody single-chain variable fragment specific for Als3p. FEMS Immunology and Medical Microbiology, 2008, 54, 195-202.	2.7	26
31	Discovering the secrets of the <i>Candida albicans</i> agglutinin-like sequence (ALS) gene family – a sticky pursuit. Medical Mycology, 2008, 46, 1-15.	0.7	307
32	Molecular Phylogenetic Analysis of a Geographically and Temporally Matched Set of <i>Candida albicans</i> Isolates from Humans and Nonmigratory Wildlife in Central Illinois. Eukaryotic Cell, 2008, 7, 1475-1486.	3.4	47
33	Unequal contribution of ALS9 alleles to adhesion between Candida albicans and human vascular endothelial cells. Microbiology (United Kingdom), 2007, 153, 2342-2350.	1.8	38
34	Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology (United Kingdom), 2007, 153, 2373-2385.	1.8	121
35	Analysis of ALS5 and ALS6 allelic variability in a geographically diverse collection of Candida albicans isolates. Fungal Genetics and Biology, 2007, 44, 1298-1309.	2.1	42
36	Deletion of <i>ALS5</i> , <i>ALS6</i> or <i>ALS7</i> increases adhesion of <i>Candida albicans</i> to human vascular endothelial and buccal epithelial cells. Medical Mycology, 2007, 45, 429-434.	0.7	46

LOIS L HOYER

#	Article	IF	CITATIONS
37	RT–PCR analysis of <i>Candida albicans</i> ALS gene expression in a hyposalivatory rat model of oral candidiasis and in HIV-positive human patients. Medical Mycology, 2006, 44, 103-111.	0.7	31
38	Cellular and Molecular Biology of Candida albicans Estrogen Response. Eukaryotic Cell, 2006, 5, 180-191.	3.4	82
39	Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology (United Kingdom), 2006, 152, 2287-2299.	1.8	155
40	Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology (United Kingdom), 2005, 151, 1051-1060.	1.8	57
41	A Human-Curated Annotation of the Candida albicans Genome. PLoS Genetics, 2005, 1, e1.	3.5	293
42	Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology (United Kingdom), 2005, 151, 1619-1630.	1.8	130
43	Use of Green Fluorescent Protein and Reverse Transcription-PCR To Monitor Candida albicans Agglutinin-Like Sequence Gene Expression in a Murine Model of Disseminated Candidiasis. Infection and Immunity, 2005, 73, 1852-1855.	2.2	31
44	Comparison between Candida albicans Agglutinin-Like Sequence Gene Expression Patterns in Human Clinical Specimens and Models of Vaginal Candidiasis. Infection and Immunity, 2005, 73, 1656-1663.	2.2	76
45	Unique Aspects of Gene Expression during Candida albicans Mating and Possible G 1 Dependency. Eukaryotic Cell, 2005, 4, 1175-1190.	3.4	60
46	Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology (United Kingdom), 2005, 151, 673-681.	1.8	99
47	ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology (United Kingdom), 2004, 150, 2415-2428.	1.8	225
48	RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology (United Kingdom), 2004, 150, 267-275.	1.8	152
49	Allelic variation in the contiguous loci encoding Candida albicans ALS5, ALS1 and ALS9. Microbiology (United Kingdom), 2003, 149, 2947-2960.	1.8	72
50	The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Molecular Microbiology, 2002, 35, 601-611.	2.5	285
51	Antifungal Resistance of Candidal Biofilms Formed on Denture Acrylic in vitro. Journal of Dental Research, 2001, 80, 903-908.	5.2	486
52	The ALS gene family of Candida albicans. Trends in Microbiology, 2001, 9, 176-180.	7.7	470
53	Biofilm Formation by the Fungal Pathogen Candida albicans : Development, Architecture, and Drug Resistance. Journal of Bacteriology, 2001, 183, 5385-5394.	2.2	1,384
54	TheALS5 gene ofCandida albicans and analysis of the Als5p N-terminal domain. Yeast, 2001, 18, 49-60.	1.7	64

LOIS L HOYER

#	Article	IF	CITATIONS
55	Characterization of Agglutinin-like Sequence Genes From Non- <i>albicans</i> Candida and Phylogenetic Analysis of the ALS Family. Genetics, 2001, 157, 1555-1567.	2.9	75
56	TheALS6 andALS7 genes ofCandida albicans. Yeast, 2000, 16, 847-855.	1.7	36
57	Detection of Als Proteins on the Cell Wall of <i>Candida albicans</i> in Murine Tissues. Infection and Immunity, 1999, 67, 4251-4255.	2.2	39
58	Candida albicans ALS3 and insights into the nature of the ALS gene family. Current Genetics, 1998, 33, 451-459.	1.7	217
59	Identification of Candida albicans ALS2 and ALS4 and Localization of Als Proteins to the Fungal Cell Surface. Journal of Bacteriology, 1998, 180, 5334-5343.	2.2	99
60	Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Molecular Microbiology, 1995, 15, 39-54.	2.5	148
61	A Candida albicans cyclic nucleotide phosphodiesterase: cloning and expression in Saccharomyces cerevisiae and biochemical characterization of the recombinant enzyme. Microbiology (United) Tj ETQq1 1 0.78	343 114 8rg B1	- ∕O v∉ rlock 10
62	The ARG4 gene of Candida albicans. Gene, 1994, 142, 213-218.	2.2	19
63	The sialidase superfamily and its spread by horizontal gene transfer. Molecular Microbiology, 1993, 9, 915-921.	2.5	168
64	Cloning, sequencing and distribution of the Salmonella typhimurlum LT2 siaiidase gene, nanH, provides evidence for interspecies gene transfer. Molecular Microbiology, 1992, 6, 873-884.	2.5	103
65	Purification and Properties of Cloned Salmonella typhimurium LT2 Sialidase with Virus-Typical Kinetic Preference for Sialyl α2→3 Linkages1. Journal of Biochemistry, 1991, 110, 462-467.	1.7	116
66	Detection and Clinical Significance of Variability among Candida Isolates. , 0, , 91-99.		0
67	Development and Use of a Monoclonal Antibody Specific for the Candida albicans Cell-Surface Protein Hwp1. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	1
68	Assessing Als3 Peptide-Binding Cavity and Amyloid-Forming Region Contributions to Candida albicans Invasion of Human Oropharyngeal Epithelial Cells. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	3