Ina Oehme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2790869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	HDAC family: What are the cancer relevant targets?. Cancer Letters, 2009, 277, 8-21.	3.2	893
3	Histone Deacetylase 8 in Neuroblastoma Tumorigenesis. Clinical Cancer Research, 2009, 15, 91-99.	3.2	335
4	DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nature Genetics, 2017, 49, 1052-1060.	9.4	235
5	HDAC8: a multifaceted target for therapeutic interventions. Trends in Pharmacological Sciences, 2015, 36, 481-492.	4.0	210
6	HDAC5 and HDAC9 in Medulloblastoma: Novel Markers for Risk Stratification and Role in Tumor Cell Growth. Clinical Cancer Research, 2010, 16, 3240-3252.	3.2	175
7	Histone deacetylase 10 promotes autophagy-mediated cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2592-601.	3.3	168
8	Synthesis and Biological Investigation of Oxazole Hydroxamates as Highly Selective Histone Deacetylase 6 (HDAC6) Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 1545-1555.	2.9	90
9	Targeting histone deacetylase 8 as a therapeutic approach to cancer and neurodegenerative diseases. Future Medicinal Chemistry, 2016, 8, 1609-1634.	1.1	79
10	HDAC Family Members Intertwined in the Regulation of Autophagy: A Druggable Vulnerability in Aggressive Tumor Entities. Cells, 2015, 4, 135-168.	1.8	71
11	Targeting class I histone deacetylase 2 in MYC amplified group 3 medulloblastoma. Acta Neuropathologica Communications, 2015, 3, 22.	2.4	66
12	Targeting of HDAC8 and investigational inhibitors in neuroblastoma. Expert Opinion on Investigational Drugs, 2009, 18, 1605-1617.	1.9	64
13	Structure-Based Design and Biological Characterization of Selective Histone Deacetylase 8 (HDAC8) Inhibitors with Anti-Neuroblastoma Activity. Journal of Medicinal Chemistry, 2017, 60, 10188-10204.	2.9	56
14	Selective Inhibition of Histone Deacetylase 10: Hydrogen Bonding to the Gatekeeper Residue is Implicated. Journal of Medicinal Chemistry, 2019, 62, 4426-4443.	2.9	56
15	<i>GRHL1</i> Acts as Tumor Suppressor in Neuroblastoma and Is Negatively Regulated by MYCN and HDAC3. Cancer Research, 2014, 74, 2604-2616.	0.4	54
16	Three-dimensional tumor cell growth stimulates autophagic flux and recapitulates chemotherapy resistance. Cell Death and Disease, 2017, 8, e3013-e3013.	2.7	43
17	Establishment and application of a novel patient-derived KIAA1549:BRAF-driven pediatric pilocytic astrocytoma model for preclinical drug testing. Oncotarget, 2017, 8, 11460-11479.	0.8	43
18	The enzyme activity of histone deacetylase 8 is modulated by a redox-switch. Redox Biology, 2019, 20, 60-67.	3.9	37

Ινα Οεημε

#	Article	IF	CITATIONS
19	Inhibition of Histone Deacetylases Permits Lipopolysaccharide-Mediated Secretion of Bioactive IL-1β via a Caspase-1–Independent Mechanism. Journal of Immunology, 2015, 195, 5421-5431.	0.4	36
20	Dual role of HDAC10 in lysosomal exocytosis and DNA repair promotes neuroblastoma chemoresistance. Scientific Reports, 2018, 8, 10039.	1.6	36
21	The HDAC6/8/10 inhibitor TH34 induces DNA damage-mediated cell death in human high-grade neuroblastoma cell lines. Archives of Toxicology, 2018, 92, 2649-2664.	1.9	28
22	Histone deacetylase 10-promoted autophagy as a druggable point of interference to improve the treatment response of advanced neuroblastomas. Autophagy, 2013, 9, 2163-2165.	4.3	22
23	A kinome-wide RNAi screen identifies ALK as a target to sensitize neuroblastoma cells for HDAC8-inhibitor treatment. Cell Death and Differentiation, 2018, 25, 2053-2070.	5.0	22
24	Design and Synthesis of Dihydroxamic Acids as HDAC6/8/10 Inhibitors. ChemMedChem, 2020, 15, 1163-1174.	1.6	21
25	Rapid In Vivo Validation of HDAC Inhibitor-Based Treatments in Neuroblastoma Zebrafish Xenografts. Pharmaceuticals, 2020, 13, 345.	1.7	19
26	Synthesis and structure activity relationship of 1, 3-benzo-thiazine-2-thiones as selective HDAC8 inhibitors. European Journal of Medicinal Chemistry, 2019, 184, 111756.	2.6	17
27	Broad-Spectrum HDAC Inhibitors Promote Autophagy through FOXO Transcription Factors in Neuroblastoma. Cells, 2021, 10, 1001.	1.8	17
28	Identification of histone deacetylase 10 (HDAC10) inhibitors that modulate autophagy in transformed cells. European Journal of Medicinal Chemistry, 2022, 234, 114272.	2.6	15
29	Design, Synthesis and Biological Characterization of Histone Deacetylase 8 (HDAC8) Proteolysis Targeting Chimeras (PROTACs) with Anti-Neuroblastoma Activity. International Journal of Molecular Sciences, 2022, 23, 7535.	1.8	15
30	Pediatric Targeted Therapy: Clinical Feasibility of Personalized Diagnostics in Children with Relapsed and Progressive Tumors. Brain Pathology, 2016, 26, 506-516.	2.1	14
31	Functional Therapeutic Target Validation Using Pediatric Zebrafish Xenograft Models. Cancers, 2022, 14, 849.	1.7	13
32	iTReX: Interactive exploration of mono- and combination therapy dose response profiling data. Pharmacological Research, 2022, 175, 105996.	3.1	11
33	First Fluorescent Acetylspermidine Deacetylation Assay for HDAC10 Identifies Selective Inhibitors with Cellular Target Engagement**. ChemBioChem, 2022, 23, .	1.3	9
34	Combining APR-246 and HDAC-Inhibitors: A Novel Targeted Treatment Option for Neuroblastoma. Cancers, 2021, 13, 4476.	1.7	8
35	MODL-15. High-throughput combination drug screening identifies synergism between retinoic acid treatment and BCL-XL-inhibition in <i>MYC(N)</i> -driven medulloblastoma and neuroblastoma models. Neuro-Oncology, 2022, 24, i171-i172.	0.6	1
36	EMBR-01. CLASS I HDAC INHIBITORS AND PLK1 INHIBITORS SYNERGIZE IN MYC-AMPLIFIED MEDULLOBLASTOMA. Neuro-Oncology, 2021, 23, i5-i5.	0.6	0

Ινα Οεημε

#	Article	IF	CITATIONS
37	EMBR-11. SYNERGISTIC DRUG COMBINATIONS FOR THE TREATMENT OF MYC AMPLIFIED GROUP 3 MEDULLOBLASTOMA. Neuro-Oncology, 2021, 23, i7-i8.	0.6	0
38	TMOD-04. IMAGE-BASED DRUG RESPONSE PROFILING FROM PEDIATRIC TUMOR CELL SPHEROIDS USING PATIENT-BY-PATIENT DEEP TRANSFER LEARNING. Neuro-Oncology, 2021, 23, i36-i36.	0.6	0
39	LGG-11. BH3-MIMETICS TARGETING BCL-XL SELECTIVELY IMPACT THE SENESCENT COMPARTMENT OF PILOCYTIC ASTROCYTOMA. Neuro-Oncology, 2021, 23, i33-i34.	0.6	0
40	MBRS-19. SYNERGISM OF HDAC AND PARP INHIBITORS IN MYC-DRIVEN GROUP 3 MEDULLOBLASTOMA CELLS. Neuro-Oncology, 2020, 22, iii401-iii401.	0.6	0
41	MODL-04. Drug screening in Disorders with Abnormal DNA Damage Response/Repair (DADDR) and <i>in vivo</i> validation. Neuro-Oncology, 2022, 24, i168-i169.	0.6	0
42	LGG-18. Inhibition of Bcl-xL targets the senescent compartment of pilocytic astrocytoma. Neuro-Oncology, 2022, 24, i91-i92.	0.6	0
43	LGG-25. The first-in-class ERK inhibitor ulixertinib (BVD-523) shows activity in MAPK-driven pediatric low-grade glioma models as single agent and in combination with MEK inhibitors or senolytics. Neuro-Oncology, 2022, 24, i93-i93.	0.6	0
44	DDEL-01. The role of key pharmacodynamic and pharmacokinetic parameters in drug response prediction of pediatric tumors in the precision oncology study INFORM. Neuro-Oncology, 2022, 24, i33-i34.	0.6	0
45	Multiomics analysis of pediatric solid tumors within the INFORM precision oncology study: From functional drug profiling to biomarker identification Journal of Clinical Oncology, 2022, 40, 10036-10036.	0.8	0