
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2790601/publications.pdf Version: 2024-02-01

VUSUE CHISTI

#	Article	IF	CITATIONS
1	Removal of nitrate and phosphate from simulated agricultural runoff water by Chlorella vulgaris. Science of the Total Environment, 2022, 802, 149988.	3.9	17
2	Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp Biotechnology Advances, 2022, 55, 107897.	6.0	43
3	Pathogens and predators impacting commercial production of microalgae and cyanobacteria. Biotechnology Advances, 2022, 55, 107884.	6.0	38
4	Palm Oil Mill Effluent for Lipid Production by the Diatom Thalassiosira pseudonana. Fermentation, 2022, 8, 23.	1.4	6
5	Compositing prevulcanized natural rubber with multiwalled carbon nanotubes to make antistatic films. Polymers for Advanced Technologies, 2022, 33, 1591-1605.	1.6	5
6	Guest editorial: Biotechnology novelties. Biotechnology Advances, 2022, , 107945.	6.0	0
7	Seaweed-based diets lead to normal growth, improved fillet color but a down-regulated expression of somatotropic axis genes in rainbow trout (Oncorhynchus mykiss). Aquaculture, 2022, 554, 738183.	1.7	3
8	Bioethanol Production. , 2022, , .		0
9	Production of lipids by Tetraselmis sp. grown in palm oil mill effluent. AIP Conference Proceedings, 2022, , .	0.3	1
10	Spray-Dried Nipa Palm Vinegar Powder: Production and Evaluation of Physicochemical, Nutritional, Sensory, and Storage Aspects. Fermentation, 2022, 8, 272.	1.4	3
11	Production of Carotenoids and Phospholipids by Thraustochytrium sp. in Batch and Repeated-Batch Culture. Marine Drugs, 2022, 20, 416.	2.2	10
12	Lipid production by the yeast Lipomyces starkeyi grown on sugars and oil palm empty fruit bunch hydrolysate. Biomass Conversion and Biorefinery, 2021, 11, 1197-1210.	2.9	13
13	Two-step isolation of hemicellulose from oil palm empty fruit bunch fibers and its use in production of xylooligosaccharide prebiotic. Industrial Crops and Products, 2021, 160, 113124.	2.5	15
14	Chemical stabilization of enzymes. , 2021, , 77-132.		2
15	Cellulose from oil palm empty fruit bunch fiber and its conversion to carboxymethylcellulose. Journal of Chemical Technology and Biotechnology, 2021, 96, 1656-1666.	1.6	15
16	Environmental impacts of examination gloves made of natural rubber and nitrile rubber, identified by life•ycle assessment. SPE Polymers, 2021, 2, 179-190.	1.4	16
17	Production of lipids by Chaetoceros affinis in media based on palm oil mill effluent. Journal of Biotechnology, 2021, 327, 86-96.	1.9	15
18	Production of Renewable Lipids by the Diatom Amphora copulata. Fermentation, 2021, 7, 37.	1.4	19

#	Article	IF	CITATIONS
19	Immobilization of β-galactosidase by halloysite-adsorption and entrapment in a cellulose nanocrystals matrix. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129896.	1.1	13
20	Antarctic Thraustochytrids as Sources of Carotenoids and High-Value Fatty Acids. Marine Drugs, 2021, 19, 386.	2.2	14
21	Nutritionally Enhanced Probioticated Whole Pineapple Juice. Fermentation, 2021, 7, 178.	1.4	4
22	Theabrownin from Pu-erh tea together with swinging exercise synergistically ameliorates obesity and insulin resistance in rats. European Journal of Nutrition, 2020, 59, 1937-1950.	1.8	28
23	Statistical optimization of lipid production by the diatom Gyrosigma sp. grown in industrial wastewater. Journal of Applied Phycology, 2020, 32, 375-387.	1.5	24
24	Model-based design, synthesis and use of thermally insulating mortar formulations for energy conservation in buildings. Journal of Cleaner Production, 2020, 276, 124287.	4.6	2
25	Temperature Differentially Affects Gene Expression in Antarctic Thraustochytrid Oblongichytrium sp. RT2316-13. Marine Drugs, 2020, 18, 563.	2.2	9
26	Microalgae biotechnology: A brief introduction. , 2020, , 3-23.		5
27	Dynamic flux balance analysis of biomass and lipid production by Antarctic thraustochytrid <i>Oblongichytrium</i> sp. RT2316â€13. Biotechnology and Bioengineering, 2020, 117, 3006-3017.	1.7	17
28	Simultaneous nitrogen fixation and ethanol production by Zymomonas mobilis. Journal of Biotechnology, 2020, 314-315, 41-52.	1.9	12
29	Guava pulp fermentation and processing to a vitamin B12â€enriched product. Journal of Food Processing and Preservation, 2020, 44, e14566.	0.9	12
30	Fermentation Technology, Bioprocessing, Scale-Up and Manufacture. , 2020, , 177-222.		2
31	Natural rubber as a template for making hollow silica spheres and their use as antibacterial agents. Microporous and Mesoporous Materials, 2019, 273, 10-18.	2.2	13
32	Alkaline and fungal pretreatments for improving methane potential of Napier grass. Biomass and Bioenergy, 2019, 127, 105262.	2.9	18
33	A comparison of methods of ethanol production from sweet sorghum bagasse. Biochemical Engineering Journal, 2019, 151, 107352.	1.8	17
34	Flocculation and electroflocculation for algal biomass recovery. , 2019, , 257-286.		19
35	Mixotrophic production of polyunsaturated fatty acids and carotenoids by the microalga Nannochloropsis gaditana. Journal of Applied Phycology, 2019, 31, 2823-2832.	1.5	41
36	Biomass and lipid production by Rhodococcus opacus PD630 in molasses-based media with and without osmotic-stress. Journal of Biotechnology, 2019, 297, 1-8.	1.9	20

#	Article	IF	CITATIONS
37	Chemo-enzymatic preparation and characterization of cellulose nanofibers-graft-poly(lactic acid)s. European Polymer Journal, 2019, 114, 308-318.	2.6	6
38	Introduction to algal fuels. , 2019, , 1-31.		9
39	Surface-Modified Cellulose Nanofibers-graft-poly(lactic acid)s Made by Ring-Opening Polymerization of I-Lactide. Journal of Polymers and the Environment, 2019, 27, 847-861.	2.4	14
40	Evaluation of microbial toxins, trace elements and sensory properties of a highâ€ŧheabrownins instant Puâ€erh tea produced using <i>Aspergillus tubingensis</i> via submerged fermentation. International Journal of Food Science and Technology, 2019, 54, 1541-1549.	1.3	16
41	Improved keeping quality of Dendrobium "Bom―orchids using nutrients entrapped in a biodegradable hydrogel. Scientia Horticulturae, 2018, 234, 184-192.	1.7	7
42	Production of renewable biohydrogen by Rhodobacter sphaeroides S10: A comparison of photobioreactors. Journal of Cleaner Production, 2018, 181, 318-328.	4.6	24
43	Ohmic heating pretreatment of algal slurry for production of biodiesel. Journal of Biotechnology, 2018, 267, 71-78.	1.9	31
44	Enhanced production of carotenoids and lipids by <i>Rhodococcus opacus</i> PD630. Journal of Chemical Technology and Biotechnology, 2018, 93, 2160-2169.	1.6	15
45	Pilot-scale outdoor photobioreactor culture of the marine dinoflagellate Karlodinium veneficum: Production of a karlotoxins-rich extract. Bioresource Technology, 2018, 253, 94-104.	4.8	14
46	Physicochemical properties and biological activities of a high-theabrownins instant Pu-erh tea produced using Aspergillus tubingensis. LWT - Food Science and Technology, 2018, 90, 598-605.	2.5	44
47	Model of acetic acid-affected growth and poly(3-hydroxybutyrate) production by Cupriavidus necator DSM 545. Journal of Biotechnology, 2018, 268, 12-20.	1.9	26
48	In-vitro assessment of probiotic potential of Lactobacillus plantarum WU-P19 isolated from a traditional fermented herb. Annals of Microbiology, 2018, 68, 79-91.	1.1	22
49	Template-assisted facile synthesis and characterization of hollow calcium silicate hydrate particles for use as reflective materials. Materials Research Bulletin, 2018, 97, 343-350.	2.7	12
50	Metabolic engineering of microorganisms for biofuel production. Renewable and Sustainable Energy Reviews, 2018, 82, 3863-3885.	8.2	124
51	Bioreactor studies of production of mycophenolic acid by Penicillium brevicompactum. Biochemical Engineering Journal, 2018, 140, 77-84.	1.8	16
52	Metabolic modelling and simulation of the light and dark metabolism of <i>Chlamydomonas reinhardtii</i> . Plant Journal, 2018, 96, 1076-1088.	2.8	12
53	Genetic and metabolic engineering for microbial production of poly-Î ³ -glutamic acid. Biotechnology Advances, 2018, 36, 1424-1433.	6.0	62
54	Guest Editorial Prospects in Biotechnology. Biotechnology Advances, 2018, 36, 555-556.	6.0	0

#	Article	lF	CITATIONS
55	Society and Microalgae. , 2018, , 11-21.		6
56	Accumulation of conjugated linoleic acid in Lactobacillus plantarum WU-P19 is enhanced by induction with linoleic acid and chitosan treatment. Annals of Microbiology, 2018, 68, 611-624.	1.1	6
57	Continuous production of biohydrogen from oil palm empty fruit bunch hydrolysate in tubular photobioreactors. International Journal of Hydrogen Energy, 2018, 43, 16497-16509.	3.8	15
58	Ultrasonic disruption of Pseudomonas putida for the release of arginine deiminase: Kinetics and predictive models. Bioresource Technology, 2017, 233, 74-83.	4.8	23
59	Enhanced Production of Poly-γ-glutamic Acid by Bacillus licheniformis TISTR 1010 with Environmental Controls. Applied Biochemistry and Biotechnology, 2017, 182, 990-999.	1.4	25
60	Optimization of production of C-phycocyanin and extracellular polymeric substances by Arthrospira sp Bioprocess and Biosystems Engineering, 2017, 40, 1173-1188.	1.7	9
61	Biomass and oil production by Chlorella vulgaris and four other microalgae — Effects of salinity and other factors. Journal of Biotechnology, 2017, 257, 47-57.	1.9	65
62	Simultaneous production of Câ€phycocyanin and extracellular polymeric substances by photoautotrophic cultures of <i>Arthrospira platensis</i> . Journal of Chemical Technology and Biotechnology, 2017, 92, 2709-2718.	1.6	14
63	Effects of shear rate, photoautotrophy and photoheterotrophy on production of biomass and pigments by <i>Chlorella vulgaris</i> . Journal of Chemical Technology and Biotechnology, 2017, 92, 2453-2459.	1.6	22
64	Furfural and glucose can enhance conversion of xylose to xylitol by Candida magnoliae TISTR 5663. Journal of Biotechnology, 2017, 241, 147-157.	1.9	17
65	Production of bioethanol by Zymomonas mobilis in high-gravity extractive fermentations. Food and Bioproducts Processing, 2017, 102, 123-135.	1.8	41
66	Microbial production of poly-γ-glutamic acid. World Journal of Microbiology and Biotechnology, 2017, 33, 173.	1.7	63
67	Production and characterization of a novel hierarchical porous silica adsorbent for removal of methylene blue dye from wastewaters. Chemical Engineering Communications, 2017, 204, 1452-1465.	1.5	7
68	A model of furfural-inhibited growth and xylitol production by Candida magnoliae TISTR 5663. Food and Bioproducts Processing, 2017, 105, 129-140.	1.8	19
69	Heterotrophic production of <i>Chlorella</i> sp. TISTR 8990—biomass growth and composition under various production conditions. Biotechnology Progress, 2017, 33, 1589-1600.	1.3	16
70	Surfactant-mediated permeabilization of Pseudomonas putida KT2440 and use of the immobilized permeabilized cells in biotransformation. Process Biochemistry, 2017, 63, 113-121.	1.8	27
71	Sulfur-Free Prevulcanization of Natural Rubber Latex by Ultraviolet Irradiation in the Presence of Diacrylates. Industrial & Engineering Chemistry Research, 2017, 56, 7217-7223.	1.8	8
72	Production of Mycophenolic Acid by Penicillium brevicompactum Using Solid State Fermentation. Applied Biochemistry and Biotechnology, 2017, 182, 97-109.	1.4	24

#	Article	IF	CITATIONS
73	Cellulose and hemicellulose recovery from oil palm empty fruit bunch (EFB) fibers and production of sugars from the fibers. Carbohydrate Polymers, 2017, 155, 491-497.	5.1	106
74	Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture. Bioprocess and Biosystems Engineering, 2017, 40, 133-143.	1.7	23
75	Biofuel Research Journal: a story of continuing success. Biofuel Research Journal, 2017, 4, 571-572.	7.2	0
76	Pilot-scale bubble column photobioreactor culture of a marine dinoflagellate microalga illuminated with light emission diodes. Bioresource Technology, 2016, 216, 845-855.	4.8	42
77	Production of potential fuel oils by Rhodococcus opacus grown on petroleum processing wastewaters. Journal of Renewable and Sustainable Energy, 2016, 8, 063106.	0.8	10
78	Sulfur-Free Prevulcanization of Natural Rubber Latex by Ultraviolet Irradiation. Industrial & Engineering Chemistry Research, 2016, 55, 3974-3981.	1.8	8
79	Production of eicosapentaenoic acid by Nannochloropsis oculata: Effects of carbon dioxide and glycerol. Journal of Biotechnology, 2016, 239, 47-56.	1.9	34
80	Disruption of Pseudomonas putida by high pressure homogenization: a comparison of the predictive capacity of three process models for the efficient release of arginine deiminase. AMB Express, 2016, 6, 84.	1.4	16
81	Prediction of pore properties of hierarchical porous silica templated on natural rubber. Microporous and Mesoporous Materials, 2016, 233, 1-9.	2.2	5
82	Production and characterization of hierarchical porous silica made using natural rubber as template: Effects of the template removal methods, the pH of production, and the natural rubber sources. Chemical Engineering Research and Design, 2016, 113, 273-283.	2.7	11
83	Production of mycophenolic acid by Penicillium brevicompactum—A comparison of two methods of optimization. Biotechnology Reports (Amsterdam, Netherlands), 2016, 11, 77-85.	2.1	39
84	Proteomics in Energy Crops. , 2016, , 105-126.		0
85	Coproduction of protease and amylase by thermophilic Bacillus sp. BBXS-2 using open solid-state fermentation of lignocellulosic biomass. Biocatalysis and Agricultural Biotechnology, 2016, 8, 146-151.	1.5	46
86	Production of theabrownins using a crude fungal enzyme concentrate. Journal of Biotechnology, 2016, 231, 250-259.	1.9	57
87	Use of response surface method for maximizing the production of arginine deiminase by Pseudomonas putida. Biotechnology Reports (Amsterdam, Netherlands), 2016, 10, 29-37.	2.1	31
88	Artificial neural network modeling for predicting the growth of the microalga Karlodinium veneficum. Algal Research, 2016, 14, 58-64.	2.4	43
89	Effect of CO 2 in the aeration gas on cultivation of the microalga Nannochloropsis oculata : Experimental study and mathematical modeling of CO 2 assimilation. Algal Research, 2016, 13, 16-29.	2.4	18
90	Continuous flocculation-sedimentation for harvesting Nannochloropsis salina biomass. Journal of Biotechnology, 2016, 222, 94-103.	1.9	27

#	Article	IF	CITATIONS
91	Optimization of oil extraction from Nannochloropsis salina biomass paste. Algal Research, 2016, 15, 100-109.	2.4	29
92	Oil production by six microalgae: impact of flocculants and drying on oil recovery from the biomass. Journal of Applied Phycology, 2016, 28, 2697-2705.	1.5	35
93	Harvesting microalgae by flocculation–sedimentation. Algal Research, 2016, 13, 271-283.	2.4	140
94	Large-Scale Production of Algal Biomass: Raceway Ponds. Green Energy and Technology, 2016, , 21-40.	0.4	69
95	Fungal Isolates from a Puâ€Erh Type Tea Fermentation and Their Ability to Convert Tea Polyphenols to Theabrownins. Journal of Food Science, 2015, 80, M809-17.	1.5	63
96	An optimal culture medium for growing Karlodinium veneficum : Progress towards a microalgal dinoflagellate-based bioprocess. Algal Research, 2015, 10, 177-182.	2.4	19
97	Optimal Control of Feeding in Fed-Batch Production of Xylitol. Industrial & Engineering Chemistry Research, 2015, 54, 1992-2000.	1.8	11
98	Forward osmosis with waste glycerol for concentrating microalgae slurries. Algal Research, 2015, 8, 168-173.	2.4	25
99	BioTech 2014 and 6th Czech–Swiss Biotechnology Symposium. Biotechnology Advances, 2015, 33, 993.	6.0	0
100	Production of poly-γ-glutamic acid by glutamic acid-independent Bacillus licheniformis TISTR 1010 using different feeding strategies. Biochemical Engineering Journal, 2015, 100, 67-75.	1.8	41
101	Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production. Journal of Biotechnology, 2015, 216, 169-177.	1.9	60
102	Photofermentive hydrogen production by Rhodobacter sphaeroides S10 using mixed organic carbon: Effects of the mixture composition. Applied Energy, 2015, 157, 245-254.	5.1	34
103	Benzoate-induced stress enhances xylitol yield in aerobic fed-batch culture of Candida mogii TISTR 5892. Journal of Biotechnology, 2015, 194, 58-66.	1.9	9
104	Applications of phototheranostic nanoagents in photodynamic therapy. Nano Research, 2015, 8, 1373-1394.	5.8	94
105	Optimal conditions for deproteinizing natural rubber using immobilized alkaline protease. Journal of Chemical Technology and Biotechnology, 2015, 90, 185-193.	1.6	6
106	The status of biofuels Biofuel Research Journal, 2015, 2, 253-253.	7.2	3
107	Bioconversion of tea polyphenols to bioactive theabrownins by Aspergillus fumigatus. Biotechnology Letters, 2014, 36, 2515-2522.	1.1	41
108	Biotransformation of 3-cyanopyridine to nicotinic acid by free and immobilized cells of recombinant Escherichia coli. Process Biochemistry, 2014, 49, 655-659.	1.8	22

#	Article	IF	CITATIONS
109	High cell density fed-batch fermentation for the production of a microbial lipase. Biochemical Engineering Journal, 2014, 85, 8-14.	1.8	18
110	Modeling of growth and laccase production by Pycnoporus sanguineus. Bioprocess and Biosystems Engineering, 2014, 37, 765-775.	1.7	11
111	Retention of hemicellulose during delignification of oil palm empty fruit bunch (EFB) fiber with peracetic acid and alkaline peroxide. Biomass and Bioenergy, 2014, 66, 240-248.	2.9	54
112	Optimal C:N ratio for the production of red pigments by Monascus ruber. World Journal of Microbiology and Biotechnology, 2014, 30, 2471-2479.	1.7	34
113	Protein production using the baculovirusâ€insect cell expression system. Biotechnology Progress, 2014, 30, 1-18.	1.3	113
114	A matter of detail: Assessing the true potential of microalgal biofuels. Biotechnology and Bioengineering, 2013, 110, 2317-2322.	1.7	58
115	Constraints to commercialization of algal fuels. Journal of Biotechnology, 2013, 167, 201-214.	1.9	603
116	High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer. Bioprocess and Biosystems Engineering, 2013, 36, 1527-1543.	1.7	25
117	Nitrile hydratase of Rhodococcus erythropolis: characterization of the enzyme and the use of whole cells for biotransformation of nitriles. 3 Biotech, 2013, 3, 319-330.	1.1	12
118	Ultrasound mediated enzymatic hydrolysis of cellulose and carboxymethyl cellulose. Biotechnology Progress, 2013, 29, 1448-1457.	1.3	32
119	Enantioselective bioreduction of cyclic alkanones by whole cells ofCandidaSpecies. Biocatalysis and Biotransformation, 2013, 31, 123-131.	1.1	9
120	Raceways-based Production of Algal Crude Oil. Green, 2013, 3, .	0.4	58
121	Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 2013, 31, 346-356.	6.0	1,790
122	Lipase catalyzed ultrasonic synthesis of poly-4-hydroxybutyrate-co-6-hydroxyhexanoate. Ultrasonics Sonochemistry, 2013, 20, 937-947.	3.8	27
123	Production and scaleâ€up of a monoclonal antibody against 17â€hydroxyprogesterone. Biotechnology Progress, 2013, 29, 154-164.	1.3	2
124	Deproteinization of Natural Rubber Using Protease Immobilized on Epichlorohydrin Cross-linked Chitosan Beads. Industrial & Engineering Chemistry Research, 2013, 52, 11723-11731.	1.8	14
125	Optimal hydrodynamic design of tubular photobioreactors. Journal of Chemical Technology and Biotechnology, 2013, 88, 55-61.	1.6	32
126	Repeated fedâ€batch production of xylitol by <i>Candida magnoliae</i> <scp>TISTR</scp> 5663. Journal of Chemical Technology and Biotechnology, 2013, 88, 1121-1129.	1.6	28

#	Article	IF	CITATIONS
127	7 Raceways-based production of algal crude oil. , 2012, , 113-146.		26
128	Production of shikimic acid. Biotechnology Advances, 2012, 30, 1425-1431.	6.0	156
129	Stereo-selective conversion of mandelonitrile to (R)-(â^')-mandelic acid using immobilized cells of recombinant Escherichia coli. 3 Biotech, 2012, 2, 319-326.	1.1	14
130	Repeated-batch production of hydrogen using Rhodobacter sphaeroides S10. International Journal of Hydrogen Energy, 2012, 37, 15855-15866.	3.8	23
131	Bioactives from microalgal dinoflagellates. Biotechnology Advances, 2012, 30, 1673-1684.	6.0	88
132	Stereoselective biocatalytic hydride transfer to substituted acetophenones by the yeast Metschnikowia koreensis. Process Biochemistry, 2012, 47, 2398-2404.	1.8	21
133	Design of raceway ponds for producing microalgae. Biofuels, 2012, 3, 387-397.	1.4	92
134	Design of a recombinant Escherichia coli for producing l-phenylalanine from glycerol. World Journal of Microbiology and Biotechnology, 2012, 28, 2937-2943.	1.7	12
135	Shearâ€induced changes in membrane fluidity during culture of a fragile dinoflagellate microalga. Biotechnology Progress, 2012, 28, 467-473.	1.3	20
136	Photofermentive production of biohydrogen from oil palm waste hydrolysate. International Journal of Hydrogen Energy, 2012, 37, 4077-4087.	3.8	48
137	Ultrasound assisted lipase catalyzed synthesis of poly-6-hydroxyhexanoate. Ultrasonics Sonochemistry, 2012, 19, 659-667.	3.8	53
138	Effects of surfactants on hydrodynamics and mass transfer in a splitâ€cylinder airlift reactor. Canadian Journal of Chemical Engineering, 2012, 90, 93-99.	0.9	32
139	Luxury uptake of phosphorus by microalgae in full-scale waste stabilisation ponds. Water Science and Technology, 2011, 63, 704-709.	1.2	60
140	Genetic algorithm-based medium optimization for a toxic dinoflagellate microalga. Harmful Algae, 2011, 10, 697-701.	2.2	15
141	Production of carbonyl reductase by Metschnikowia koreensis. Bioresource Technology, 2011, 102, 10679-10685.	4.8	7
142	Gold nanoparticles produced in a microalga. Journal of Nanoparticle Research, 2011, 13, 6439-6445.	0.8	140
143	Photoautotrophic Production of Lipids by Some Chlorella Strains. Marine Biotechnology, 2011, 13, 928-941.	1.1	27
144	Ultrasound-assisted fermentation enhances bioethanol productivity. Biochemical Engineering Journal, 2011, 54, 141-150.	1.8	106

#	Article	IF	CITATIONS
145	Energy from algae: Current status and future trends. Applied Energy, 2011, 88, 3277-3279.	5.1	183
146	Stabilization of invertase by molecular engineering. Biotechnology Progress, 2010, 26, 111-117.	1.3	8
147	Influence of ultrasound amplitude and duty cycle on fungal morphology and broth rheology of Aspergillus terreus. World Journal of Microbiology and Biotechnology, 2010, 26, 1409-1418.	1.7	11
148	A bioeconomy vision of sustainability…. Biofuels, Bioproducts and Biorefining, 2010, 4, 359-361.	1.9	13
149	Potential fuel oils from the microalga <i>Choricystis minor</i> . Journal of Chemical Technology and Biotechnology, 2010, 85, 100-108.	1.6	93
150	Protein measurements of microalgal and cyanobacterial biomass. Bioresource Technology, 2010, 101, 7587-7591.	4.8	465
151	Fuels from microalgae. Biofuels, 2010, 1, 233-235.	1.4	83
152	Xylitol production by liquid emulsion membrane encapsulated yeast cells. Journal of Chemical Technology and Biotechnology, 2009, 84, 1218-1228.	1.6	10
153	Causes of shear sensitivity of the toxic dinoflagellate <i>Protoceratium reticulatum</i> . Biotechnology Progress, 2009, 25, 792-800.	1.3	62
154	Production of l-phenylalanine from glycerol by a recombinant Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1267-1274.	1.4	56
155	Towards a luxury uptake process via microalgae – Defining the polyphosphate dynamics. Water Research, 2009, 43, 4207-4213.	5.3	273
156	Macronutrients requirements of the dinoflagellate Protoceratium reticulatum. Harmful Algae, 2009, 8, 239-246.	2.2	30
157	Bubble size in a forced circulation loop reactor. Journal of Chemical Technology and Biotechnology, 2008, 83, 105-108.	1.6	13
158	Effects of ultrasound on culture of <i>Aspergillus terreus</i> . Journal of Chemical Technology and Biotechnology, 2008, 83, 593-600.	1.6	49
159	Protease production by <i>Aspergillus oryzae</i> in solidâ€state fermentation using agroindustrial substrates. Journal of Chemical Technology and Biotechnology, 2008, 83, 1012-1018.	1.6	135
160	Lovastatin production by <i>Aspergillus terreus</i> in a twoâ€staged feeding operation. Journal of Chemical Technology and Biotechnology, 2008, 83, 1236-1243.	1.6	21
161	Transesterification of primary and secondary alcohols using Pseudomonas aeruginosa lipase. Bioresource Technology, 2008, 99, 2116-2120.	4.8	28
162	Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 2008, 26, 126-131.	4.9	1,709

#	Article	IF	CITATIONS
163	Response to Reijnders: Do biofuels from microalgae beat biofuels from terrestrial plants?. Trends in Biotechnology, 2008, 26, 351-352.	4.9	144
164	Factors Influencing Luxury Uptake of Phosphorus by Microalgae in Waste Stabilization Ponds. Environmental Science & Technology, 2008, 42, 5958-5962.	4.6	212
165	Aeration and mixing in vortex fermenters. Journal of Chemical Technology and Biotechnology, 2007, 58, 331-336.	1.6	14
166	Gas holdup and mixing characteristics of a novel forced circulation loop reactor. Chemical Engineering Journal, 2007, 131, 105-111.	6.6	39
167	Biotechnological significance of toxic marine dinoflagellates. Biotechnology Advances, 2007, 25, 176-194.	6.0	160
168	Biodiesel from microalgae. Biotechnology Advances, 2007, 25, 294-306.	6.0	7,922
169	Production of fructose from inulin using mixed inulinases from Aspergillus niger and Candida guilliermondii. World Journal of Microbiology and Biotechnology, 2007, 23, 543-552.	1.7	71
170	Optimization of lactic acid production by immobilized Lactococcus lactis IO-1. Journal of Industrial Microbiology and Biotechnology, 2007, 34, 381-391.	1.4	50
171	Bioreactor design. , 2006, , 181-200.		7
172	Production of an active recombinant Aspin antigen in Escherichia coli for identifying animals resistant to nematode infection. Enzyme and Microbial Technology, 2006, 38, 591-598.	1.6	11
173	Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess and Biosystems Engineering, 2006, 28, 243-250.	1.7	124
174	A recombinant vaccine against hydatidosis: production of the antigen in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 173-182.	1.4	38
175	A bioreaction–diffusion model for growth of marine sponge explants in bioreactors. Applied Microbiology and Biotechnology, 2006, 73, 525-532.	1.7	4
176	MICROALGAE AS SUSTAINABLE CELL FACTORIES. Environmental Engineering and Management Journal, 2006, 5, 261-274.	0.2	64
177	Gas–liquid mass transfer in a novel forced circulation loop reactor. Chemical Engineering Journal, 2005, 112, 73-80.	6.6	78
178	Shear effects on suspended marine sponge cells. Biochemical Engineering Journal, 2005, 26, 115-121.	1.8	13
179	Effects of pellet morphology on broth rheology in fermentations of Aspergillus terreus. Biochemical Engineering Journal, 2005, 26, 139-144.	1.8	90
180	Biotechnology—a sustainable alternative for chemical industry. Biotechnology Advances, 2005, 23, 471-499.	6.0	541

#	Article	IF	CITATIONS
181	A model of xylitol production by the yeast Candida mogii. Bioprocess and Biosystems Engineering, 2005, 28, 175-183.	1.7	66
182	Toxicities of triclosan, phenol, and copper sulfate in activated sludge. Environmental Toxicology, 2005, 20, 160-164.	2.1	52
183	Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. Journal of Biotechnology, 2005, 116, 61-77.	1.9	147
184	Streptokinase—a clinically useful thrombolytic agent. Biotechnology Advances, 2004, 22, 287-307.	6.0	162
185	Who needs a conventional dairy industry?. Biotechnology Advances, 2004, 22, 361.	6.0	1
186	Environmental impact of toxic pollutants. Biotechnology Advances, 2004, 22, 431-432.	6.0	8
187	Lovastatin inhibits its own synthesis in Aspergillus terreus. Journal of Industrial Microbiology and Biotechnology, 2004, 31, 48-50.	1.4	26
188	Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 2003, 20, 491-515.	6.0	1,846
189	Ultrasound—the power of a silent gong. Biotechnology Advances, 2003, 21, 1.	6.0	2
190	Scientific publishing—an evolving beast. Biotechnology Advances, 2003, 21, 101-102.	6.0	0
191	Polysaccharopeptides of Coriolus versicolor: physiological activity, uses, and production. Biotechnology Advances, 2003, 21, 109-122.	6.0	241
192	Producing drugs from marine sponges. Biotechnology Advances, 2003, 21, 585-598.	6.0	136
193	Sonobioreactors: using ultrasound for enhanced microbial productivity. Trends in Biotechnology, 2003, 21, 89-93.	4.9	226
194	A mechanistic model of photosynthesis in microalgae. Biotechnology and Bioengineering, 2003, 81, 459-473.	1.7	214
195	Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal, 2003, 16, 287-297.	1.8	235
196	Bioreactors. , 2003, , 247-271.		8
197	Combined toxicity effects of MTBE and pesticides measured with Vibrio fischeri and Daphnia magna bioassays. Water Research, 2003, 37, 4091-4098.	5.3	88
198	Botryococcus braunii: A Renewable Source of Hydrocarbons and Other Chemicals. Critical Reviews in Biotechnology, 2002, 22, 245-279.	5.1	602

#	Article	IF	CITATIONS
199	Oxygen transfer and mixing in mechanically agitated airlift bioreactors. Biochemical Engineering Journal, 2002, 10, 143-153.	1.8	142
200	Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture. Enzyme and Microbial Technology, 2002, 31, 1015-1023.	1.6	165
201	Comparative evaluation of the effects of pesticides in acute toxicity luminescence bioassays. Analytica Chimica Acta, 2002, 451, 195-202.	2.6	46
202	Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 2001, 92, 113-131.	1.9	491
203	Hydrodynamic Damage to Animal Cells. Critical Reviews in Biotechnology, 2001, 21, 67-110.	5.1	232
204	Carboxymethyl cellulose protects algal cells against hydrodynamic stress. Enzyme and Microbial Technology, 2001, 29, 602-610.	1.6	81
205	Production and recovery of recombinant protease inhibitor α1-antitrypsin. Enzyme and Microbial Technology, 2001, 29, 611-620.	1.6	30
206	Axial inhomogeneities in steady-state dissolved oxygen in airlift bioreactors: predictive models. Chemical Engineering Journal, 2001, 84, 43-55.	6.6	28
207	Toxicity of pesticides in wastewater: a comparative assessment of rapid bioassays. Analytica Chimica Acta, 2001, 426, 289-301.	2.6	59
208	Is only the cow mad?. Biotechnology Advances, 2001, 19, 173.	6.0	0
209	Production, purification, characterization, and applications of lipases. Biotechnology Advances, 2001, 19, 627-662.	6.0	1,152
210	A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from		
	microalgae and fish oil. Enzyme and Microbial Technology, 2000, 26, 516-529.	1.6	243
211	microalgae and fish oil. Enzyme and Microbial Technology, 2000, 26, 516-529. Marine biotechnology — a neglected resource. Biotechnology Advances, 2000, 18, 547-548.	1.6 6.0	243 7
211 212	microalgae and fish oil. Enzyme and Microbial Technology, 2000, 26, 516-529.		
	microalgae and fish oil. Enzyme and Microbial Technology, 2000, 26, 516-529. Marine biotechnology — a neglected resource. Biotechnology Advances, 2000, 18, 547-548.	6.0	7
212	microalgae and fish oil. Enzyme and Microbial Technology, 2000, 26, 516-529. Marine biotechnology — a neglected resource. Biotechnology Advances, 2000, 18, 547-548. Animal-cell damage in sparged bioreactors. Trends in Biotechnology, 2000, 18, 420-432. Process and plant design in biochemical engineering education. European Journal of Engineering	6.0 4.9	7 239
212 213	 microalgae and fish oil. Enzyme and Microbial Technology, 2000, 26, 516-529. Marine biotechnology — a neglected resource. Biotechnology Advances, 2000, 18, 547-548. Animal-cell damage in sparged bioreactors. Trends in Biotechnology, 2000, 18, 420-432. Process and plant design in biochemical engineering education. European Journal of Engineering Education, 2000, 25, 165-175. Fermentation optimization for the production of poly(β-hydroxybutyric acid) microbial thermoplastic. 	6.0 4.9 1.5	7 239 2

#	Article	IF	CITATIONS
217	Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. Progress in Industrial Microbiology, 1999, , 249-270.	0.0	24
218	Photobioreactors: light regime, mass transfer, and scaleup. Journal of Biotechnology, 1999, 70, 231-247.	1.9	456
219	Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. Journal of Biotechnology, 1999, 70, 249-270.	1.9	286
220	FERMENTATION (INDUSTRIAL) Basic Considerations. , 1999, , 663-674.		13
221	PROCESS HYGIENE Modern Systems of Plant Cleaning. , 1999, , 1806-1815.		18
222	Disruption ofAlcaligeneslatusfor Recovery of Poly(β-hydroxybutyric acid): Comparison of High-Pressure Homogenization, Bead Milling, and Chemically Induced Lysis. Industrial & Engineering Chemistry Research, 1998, 37, 1807-1814.	1.8	88
223	Pneumatically Agitated Bioreactors in Industrial and Environmental Bioprocessing: Hydrodynamics, Hydraulics, and Transport Phenomena. Applied Mechanics Reviews, 1998, 51, 33-112.	4.5	138
224	Characterization of shear rates in airlift bioreactors for animal cell culture. Journal of Biotechnology, 1997, 54, 195-210.	1.9	54
225	Bioprocessing with Genetically Modified and Other Organisms. Case Studies in Processing Constraints. Annals of the New York Academy of Sciences, 1996, 782, 391-401.	1.8	4
226	Tissue-type plasminogen activator: Characteristics, applications and production technology. Biotechnology Advances, 1996, 14, 239-266.	6.0	80
227	Plasmid stability in recombinant Saccharomyces cerevisiae. Biotechnology Advances, 1996, 14, 401-435.	6.0	100
228	Culture of Saccharomyces cerevisiae on hydrolyzed waste cassava starch for production of baking-quality yeast. Enzyme and Microbial Technology, 1996, 18, 519-525.	1.6	54
229	SPLIT-CYLINDER AIRLIFT REACTORS: HYDRAULICS AND HYDRODYNAMICS OF A NEW MODE OF OPERATION. Chemical Engineering Communications, 1996, 155, 19-44.	1.5	8
230	A New Method for the Measurement of Solids Holdup in Gas-Liquid-Solid Three-Phase Systems. Industrial & Engineering Chemistry Research, 1995, 34, 928-935.	1.8	14
231	Influence of the gas—liquid separator design on hydrodynamic and mass transfer performance of split-channel airlift reactors. Journal of Chemical Technology and Biotechnology, 1995, 62, 327-332.	1.6	41
232	Effects of the hydrodynamic environment and shear protectants on survival of erythrocytes in suspension. Journal of Biotechnology, 1995, 43, 33-40.	1.9	32
233	On liquid circulation in external-loop airlift reactors. Journal of Chemical Technology and Biotechnology, 1994, 59, 101-102.	1.6	2
234	Clean-in-place systems for industrial bioreactors: Design, validation and operation. Journal of Industrial Microbiology, 1994, 13, 201-207.	0.9	70

#	Article	lF	CITATIONS
235	Bioreactor applications in waste treatment. Resources, Conservation and Recycling, 1994, 11, 13-24.	5.3	16
236	Dynamics of phenol degradation byPseudomonas putida. Biotechnology and Bioengineering, 1993, 41, 572-580.	1.7	128
237	Spectrophotometric determination of mycelial biomass. Biotechnology Letters, 1993, 7, 313-316.	0.5	29
238	Safety in industrial microbiology and biotechnology. Trends in Biotechnology, 1993, 11, 265-266.	4.9	1
239	Fermentation of cellulosic materials to mycoprotein foods. Biotechnology Advances, 1993, 11, 469-479.	6.0	43
240	Protein enhancement of foods. Biotechnology Advances, 1993, 11, 467.	6.0	1
241	Animal cell culture in stirred bioreactors: observations on scale-up. Process Biochemistry, 1993, 28, 511-517.	1.8	18
242	Production of enzymes. Biotechnology Advances, 1993, 11, 385.	6.0	2
243	Biotransformations of rifamycins: Process possibilities. Biotechnology Advances, 1992, 10, 577-595.	6.0	16
244	MULTIPHASE HYDRODYNAMICS AND SOLID-LIQUID MASS TRANSPORT IN AN EXTERNAL-LOOP AIRLIFT REACTOR—A COMPARATIVE STUDY. Chemical Engineering Communications, 1992, 113, 1-13.	1.5	29
245	Fermentative conversion of cellulosic substrates to microbial protein byNeurospora sitophila. Biotechnology Letters, 1992, 14, 863-868.	1.1	29
246	Mass transfer in externalâ€loop airlift bioreactors using static mixers. Canadian Journal of Chemical Engineering, 1990, 68, 45-50.	0.9	79
247	Large scale protein separations: Engineering aspects of chromatography. Biotechnology Advances, 1990, 8, 699-708.	6.0	14
248	On the calculation of shear rate and apparent viscosity in airlift and bubble column bioreactors. Biotechnology and Bioengineering, 1989, 34, 1391-1392.	1.7	109
249	Hydrodynamics and oxygen transfer in pneumatic bioreactor devices. Biotechnology and Bioengineering, 1988, 31, 487-494.	1.7	94
250	Gas holdup behaviour in fermentation broths and other non-newtonian fluids in pneumatically agitated reactors. The Chemical Engineering Journal, 1988, 39, B31-B36.	0.4	12
251	Considerations for Designing Bioreactors for Shear–Sensitive Culture. Nature Biotechnology, 1988, 6, 1291-1296.	9.4	24
252	Prediction of liquid circulation velocity in airlift reactors with biological media. Journal of Chemical Technology and Biotechnology, 1988, 42, 211-219.	1.6	40

#	Article	IF	CITATIONS
253	Disruption of microbial cells for intracellular products. Enzyme and Microbial Technology, 1986, 8, 194-204.	1.6	431
254	Lipase-Catalysed Polymerization of Lactic Acid and the Properties of the Polymer. Advanced Materials Research, 0, 506, 154-157.	0.3	14
255	Recovery of Red Pigments from Monascus purpureus FTC 5357 by Extraction of Fermented Solids: Operational Conditions and Kinetics. Brazilian Archives of Biology and Technology, 0, 64, .	0.5	2
256	BiodieselAnalyzer: a user-friendly software for predicting the properties of prospective biodiesel. Biofuel Research Journal, 0, , 55-57.	7.2	190
257	Future of bioethanol…. Biofuel Research Journal, 0, , 147-147.	7.2	29
258	The effects of forced aeration and initial moisturelevel on red pigment and biomass production byMonascus ruber in packed bed solid statefermentation. International Journal of Environmental Science and Development, 0, , 1-4.	0.2	18