List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2790567/publications.pdf Version: 2024-02-01

DONC 7HL

#	Article	IF	CITATIONS
1	Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biology and Biochemistry, 2018, 116, 302-310.	4.2	385
2	Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus. Environmental Pollution, 2018, 239, 408-415.	3.7	254
3	Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology and Biochemistry, 2020, 141, 107686.	4.2	247
4	Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida. Environmental Pollution, 2019, 247, 890-897.	3.7	230
5	Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica. Environmental Pollution, 2019, 251, 110-116.	3.7	171
6	Soil biota, antimicrobial resistance and planetary health. Environment International, 2019, 131, 105059.	4.8	163
7	Antibiotics Disturb the Microbiome and Increase the Incidence of Resistance Genes in the Gut of a Common Soil Collembolan. Environmental Science & Technology, 2018, 52, 3081-3090.	4.6	162
8	Soil plastispheres as hotspots of antibiotic resistance genes and potential pathogens. ISME Journal, 2022, 16, 521-532.	4.4	148
9	Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida. Environmental Pollution, 2018, 235, 150-154.	3.7	134
10	Long-Term Fertilization History Alters Effects of Microplastics on Soil Properties, Microbial Communities, and Functions in Diverse Farmland Ecosystem. Environmental Science & Technology, 2021, 55, 4658-4668.	4.6	132
11	Effect of biochar amendment on the alleviation of antibiotic resistance in soil and phyllosphere of Brassica chinensis L Soil Biology and Biochemistry, 2018, 119, 74-82.	4.2	105
12	Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China. Science of the Total Environment, 2019, 677, 373-381.	3.9	104
13	Long-term application of organic fertilization causes the accumulation of antibiotic resistome in earthworm gut microbiota. Environment International, 2019, 124, 145-152.	4.8	102
14	Effects of Arsenic on Gut Microbiota and Its Biotransformation Genes in Earthworm <i>Metaphire sieboldi</i> . Environmental Science & Technology, 2019, 53, 3841-3849.	4.6	78
15	Spatial and temporal distribution of antibiotic resistomes in a peri-urban area is associated significantly with anthropogenic activities. Environmental Pollution, 2018, 235, 525-533.	3.7	74
16	Dysbiosis in the Gut Microbiota of Soil Fauna Explains the Toxicity of Tire Tread Particles. Environmental Science & Technology, 2020, 54, 7450-7460.	4.6	71
17	Trophic Transfer of Antibiotic Resistance Genes in a Soil Detritus Food Chain. Environmental Science & Technology, 2019, 53, 7770-7781.	4.6	69
18	Exposure of a Soil Collembolan to Ag Nanoparticles and AgNO ₃ Disturbs Its Associated Microbiota and Lowers the Incidence of Antibiotic Resistance Genes in the Gut. Environmental Science & Technology, 2018, 52, 12748-12756.	4.6	67

#	Article	IF	CITATIONS
19	Application of biosolids drives the diversity of antibiotic resistance genes in soil and lettuce at harvest. Soil Biology and Biochemistry, 2018, 122, 131-140.	4.2	67
20	The fungicide azoxystrobin perturbs the gut microbiota community and enriches antibiotic resistance genes in Enchytraeus crypticus. Environment International, 2019, 131, 104965.	4.8	64
21	Adsorbed Sulfamethoxazole Exacerbates the Effects of Polystyrene (â^¼2 μm) on Gut Microbiota and the Antibiotic Resistome of a Soil Collembolan. Environmental Science & Technology, 2019, 53, 12823-12834.	4.6	63
22	Heavy metal-induced co-selection of antibiotic resistance genes in the gut microbiota of collembolans. Science of the Total Environment, 2019, 683, 210-215.	3.9	63
23	Impact of Wastewater Treatment on the Prevalence of Integrons and the Genetic Diversity of Integron Gene Cassettes. Applied and Environmental Microbiology, 2018, 84, .	1.4	62
24	Phyllosphere of staple crops under pig manure fertilization, a reservoir of antibiotic resistance genes. Environmental Pollution, 2019, 252, 227-235.	3.7	62
25	Arsenic and Sulfamethoxazole Increase the Incidence of Antibiotic Resistance Genes in the Gut of Earthworm. Environmental Science & Technology, 2019, 53, 10445-10453.	4.6	59
26	Does nano silver promote the selection of antibiotic resistance genes in soil and plant?. Environment International, 2019, 128, 399-406.	4.8	59
27	The ecological clusters of soil organisms drive the ecosystem multifunctionality under long-term fertilization. Environment International, 2022, 161, 107133.	4.8	53
28	Deciphering Potential Roles of Earthworms in Mitigation of Antibiotic Resistance in the Soils from Diverse Ecosystems. Environmental Science & Technology, 2021, 55, 7445-7455.	4.6	49
29	Does reduced usage of antibiotics in livestock production mitigate the spread of antibiotic resistance in soil, earthworm guts, and the phyllosphere?. Environment International, 2020, 136, 105359.	4.8	47
30	Land Use Influences Antibiotic Resistance in the Microbiome of Soil Collembolans <i>Orchesellides sinensis</i> . Environmental Science & amp; Technology, 2018, 52, 14088-14098.	4.6	46
31	Effects of Earthworms on the Microbiomes and Antibiotic Resistomes of Detritus Fauna and Phyllospheres. Environmental Science & Technology, 2020, 54, 6000-6008.	4.6	41
32	Distinct effects of struvite and biochar amendment on the class 1 integron antibiotic resistance gene cassettes in phyllosphere and rhizosphere. Science of the Total Environment, 2018, 631-632, 668-676.	3.9	40
33	Estimating cadmium availability to the hyperaccumulator Sedum plumbizincicola in a wide range of soil types using a piecewise function. Science of the Total Environment, 2018, 637-638, 1342-1350.	3.9	39
34	Effects of nano- or microplastic exposure combined with arsenic on soil bacterial, fungal, and protistan communities. Chemosphere, 2021, 281, 130998.	4.2	37
35	Tire wear particles: An emerging threat to soil health. Critical Reviews in Environmental Science and Technology, 2023, 53, 239-257.	6.6	37
36	Mineral and organic fertilization alters the microbiome of a soil nematode Dorylaimus stagnalis and its resistome. Science of the Total Environment, 2019, 680, 70-78.	3.9	35

#	Article	IF	CITATIONS
37	Effects of long-term fertilization on the associated microbiota of soil collembolan. Soil Biology and Biochemistry, 2019, 130, 141-149.	4.2	34
38	Microbial functional traits in phyllosphere are more sensitive to anthropogenic disturbance than in soil. Environmental Pollution, 2020, 265, 114954.	3.7	34
39	Biological transfer of dietary cadmium in relation to nitrogen transfer and 15N fractionation in a soil collembolan-predatory mite food chain. Soil Biology and Biochemistry, 2016, 101, 207-216.	4.2	33
40	Effects of biochar amendments on antibiotic resistome of the soil and collembolan gut. Journal of Hazardous Materials, 2019, 377, 186-194.	6.5	32
41	Soil oxytetracycline exposure alters the microbial community and enhances the abundance of antibiotic resistance genes in the gut of Enchytraeus crypticus. Science of the Total Environment, 2019, 673, 357-366.	3.9	29
42	Effects of diet on gut microbiota of soil collembolans. Science of the Total Environment, 2019, 676, 197-205.	3.9	28
43	Agricultural activities affect the pattern of the resistome within the phyllosphere microbiome in peri-urban environments. Journal of Hazardous Materials, 2020, 382, 121068.	6.5	28
44	Agricultural land-use change and rotation system exert considerable influences on the soil antibiotic resistome in Lake Tai Basin. Science of the Total Environment, 2021, 771, 144848.	3.9	27
45	Insights into the roles of fungi and protist in the giant panda gut microbiome and antibiotic resistome. Environment International, 2021, 155, 106703.	4.8	26
46	Exposure to tetracycline perturbs the microbiome of soil oligochaete Enchytraeus crypticus. Science of the Total Environment, 2019, 654, 643-650.	3.9	25
47	Antibiotic Resistance in the Collembolan Gut Microbiome Accelerated by the Nonantibiotic Drug Carbamazepine. Environmental Science & Technology, 2020, 54, 10754-10762.	4.6	25
48	Extractable additives in microplastics: A hidden threat to soil fauna. Environmental Pollution, 2022, 294, 118647.	3.7	25
49	Ecotoxicity of cadmium in a soil collembolan-predatory mite food chain: Can we use the 15N labeled litter addition method to assess soilÂfunctional change?. Environmental Pollution, 2016, 219, 37-46.	3.7	23
50	Host identity determines plant associated resistomes. Environmental Pollution, 2020, 258, 113709.	3.7	23
51	Exposure to heavy metal and antibiotic enriches antibiotic resistant genes on the tire particles in soil. Science of the Total Environment, 2021, 792, 148417.	3.9	21
52	Species-specific response of the soil collembolan gut microbiome and resistome to soil oxytetracycline pollution. Science of the Total Environment, 2019, 668, 1183-1190.	3.9	20
53	Exposure of CuO nanoparticles and their metal counterpart leads to change in the gut microbiota and resistome of collembolans. Chemosphere, 2020, 258, 127347.	4.2	20
54	Seasonal change is a major driver of soil resistomes at a watershed scale. ISME Communications, 2021, 1, .	1.7	20

#	Article	IF	CITATIONS
55	Earthworms reduce the dissemination potential of antibiotic resistance genes by changing bacterial co-occurrence patterns in soil. Journal of Hazardous Materials, 2022, 426, 128127.	6.5	20
56	Arsenic bioaccumulation in the soil fauna alters its gut microbiome and microbial arsenic biotransformation capacity. Journal of Hazardous Materials, 2021, 417, 126018.	6.5	19
57	Effects of Trophic Level and Land Use on the Variation of Animal Antibiotic Resistome in the Soil Food Web. Environmental Science & Technology, 2022, 56, 14937-14947.	4.6	19
58	Trophic level drives the host microbiome of soil invertebrates at a continental scale. Microbiome, 2021, 9, 189.	4.9	18
59	Diverse antibiotic resistance genes and potential pathogens inhabit in the phyllosphere of fresh vegetables. Science of the Total Environment, 2022, 815, 152851.	3.9	18
60	Long-Term Fertilization Shapes the Putative Electrotrophic Microbial Community in Paddy Soils Revealed by Microbial Electrosynthesis Systems. Environmental Science & Technology, 2021, 55, 3430-3441.	4.6	17
61	Combined pollution of arsenic and Polymyxin B enhanced arsenic toxicity and enriched ARG abundance in soil and earthworm gut microbiotas. Journal of Environmental Sciences, 2021, 109, 171-180.	3.2	17
62	The gut microbiota of soil organisms show species-specific responses to liming. Science of the Total Environment, 2019, 659, 715-723.	3.9	16
63	Repeated phytoextraction of metal contaminated calcareous soil by hyperaccumulator <i>Sedum plumbizincicola</i> . International Journal of Phytoremediation, 2018, 20, 1243-1249.	1.7	15
64	Testosterone amendment alters metabolite profiles of the soil microbial community. Environmental Pollution, 2021, 272, 115928.	3.7	15
65	Insights into the Role of the Fungal Community in Variations of the Antibiotic Resistome in the Soil Collembolan Gut Microbiome. Environmental Science & Technology, 2021, 55, 11784-11794.	4.6	15
66	Refinement of Methodology for Cadmium Determination in Soil Micro-Arthropod Tissues. Pedosphere, 2017, 27, 491-501.	2.1	12
67	The driving factors of nematode gut microbiota under long-term fertilization. FEMS Microbiology Ecology, 2020, 96, .	1.3	12
68	Calling for comprehensive explorations between soil invertebrates and arbuscular mycorrhizas. Trends in Plant Science, 2022, 27, 793-801.	4.3	10
69	How can fertilization regimes and durations shape earthworm gut microbiota in a long-term field experiment?. Ecotoxicology and Environmental Safety, 2021, 224, 112643.	2.9	9
70	Responses of earthworm Metaphire vulgaris gut microbiota to arsenic and nanoplastics contamination. Science of the Total Environment, 2022, 806, 150279.	3.9	9
71	Dispersal of antibiotic resistance genes in an agricultural influenced multi-branch river network. Science of the Total Environment, 2022, 830, 154739.	3.9	9
72	Antibiotic resistance genes in the soil ecosystem and planetary health: Progress and prospect. Scientia Sinica Vitae, 2019, 49, 1652-1663.	0.1	8

#	Article	IF	CITATIONS
73	Collembolans accelerate the dispersal of antibiotic resistance genes in the soil ecosystem. Soil Ecology Letters, 2019, 1, 14-21.	2.4	7
74	Species-specific effects of arsenic on the soil collembolan gut microbiota. Ecotoxicology and Environmental Safety, 2019, 183, 109538.	2.9	6
75	Rejoinder to "Comments on Zhu et al. (2018) Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition―[Soil Biol. Biochem. 116 302–310]. Soil Biology and Biochemistry, 2018, 124, 275-276.	4.2	5
76	Mite gut microbiome and resistome exhibited species-specific and dose-dependent effect in response to oxytetracycline exposure. Science of the Total Environment, 2022, 807, 150802.	3.9	4
77	Effects of soil protists on the antibiotic resistome under long term fertilization. Environmental Pollution, 2022, 307, 119516.	3.7	4
78	GLOBAL TRENDS AND PERFORMANCES OF STUDIES ON ANTIBIOTIC RESISTANCE GENES. Environmental Engineering and Management Journal, 2020, 19, 485-495.	0.2	1