Lingyun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/279050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoanodes based on TiO ₂ and α-Fe ₂ O ₃ for solar water splitting – superior role of 1D nanoarchitectures and of combined heterostructures. Chemical Society Reviews, 2017, 46, 3716-3769.	18.7	535
2	Carbon Dot Loading and TiO ₂ Nanorod Length Dependence of Photoelectrochemical Properties in Carbon Dot/TiO ₂ Nanorod Array Nanocomposites. ACS Applied Materials & Interfaces, 2014, 6, 4883-4890.	4.0	169
3	Carbon dot hybrids with oligomeric silsesquioxane: solid-state luminophores with high photoluminescence quantum yield and applicability in white light emitting devices. Chemical Communications, 2015, 51, 2950-2953.	2.2	125
4	Flexible composite-nanofiber based piezo-triboelectric nanogenerators for wearable electronics. Journal of Materials Chemistry A, 2019, 7, 13347-13355.	5.2	120
5	Water tank triboelectric nanogenerator for efficient harvesting of water wave energy over a broad frequency range. Nano Energy, 2018, 44, 388-398.	8.2	91
6	Electrospinning-induced preferred dipole orientation in PVDF fibers. Journal of Materials Science, 2015, 50, 4342-4347.	1.7	86
7	Spectroscopic evidence for a high fraction of ferroelectric phase induced in electrospun polyvinylidene fluoride fibers. RSC Advances, 2013, 3, 24952.	1.7	85
8	Hybrid conductive hydrogels for washable human motion energy harvester and self-powered temperature-stress dual sensor. Nano Energy, 2019, 66, 104080.	8.2	85
9	Recent progress on flexible nanogenerators toward selfâ€powered systems. InformaÄnÃ-MateriÃily, 2020, 2, 318-340.	8.5	85
10	Highly Flexible and Transparent Polyionicâ€6kin Triboelectric Nanogenerator for Biomechanical Motion Harvesting. Advanced Energy Materials, 2019, 9, 1803183.	10.2	72
11	BiOI/TiO2-nanorod array heterojunction solar cell: Growth, charge transport kinetics and photoelectrochemical properties. Applied Surface Science, 2015, 324, 532-537.	3.1	60
12	Solvent-free adhesive ionic elastomer for multifunctional stretchable electronics. Nano Energy, 2022, 91, 106611.	8.2	54
13	Thin, Skinâ€Integrated, Stretchable Triboelectric Nanogenerators for Tactile Sensing. Advanced Electronic Materials, 2020, 6, 1901174.	2.6	53
14	Skinâ€Integrated Grapheneâ€Embedded Lead Zirconate Titanate Rubber for Energy Harvesting and Mechanical Sensing. Advanced Materials Technologies, 2019, 4, 1900744.	3.0	52
15	A paradigm shift fully self-powered long-distance wireless sensing solution enabled by discharge-induced displacement current. Science Advances, 2021, 7, eabi6751.	4.7	50
16	Carbon Dot-Based Composite Films for Simultaneously Harvesting Raindrop Energy and Boosting Solar Energy Conversion Efficiency in Hybrid Cells. ACS Nano, 2020, 14, 10359-10369.	7.3	47
17	A Simple Graphene NH3 Gas Sensor via Laser Direct Writing. Sensors, 2018, 18, 4405.	2.1	46
18	A metal-electrode-free, fully integrated, soft triboelectric sensor array for self-powered tactile sensing. Microsystems and Nanoengineering, 2020, 6, 59.	3.4	45

LINGYUN WANG

#	Article	IF	CITATIONS
19	Tribo-charge enhanced hybrid air filter masks for efficient particulate matter capture with greatly extended service life. Nano Energy, 2021, 85, 106015.	8.2	43
20	Photoelectrochemical and structural properties of TiO 2 nanotubes and nanorods grown on FTO substrate: Comparative study between electrochemical anodization and hydrothermal method used for the nanostructures fabrication. Catalysis Today, 2017, 287, 130-136.	2.2	42
21	Nanostar morphology of plasmonic particles strongly enhances photoelectrochemical water splitting of TiO2 nanorods with superior incident photon-to-current conversion efficiency in visible/near-infrared region. Electrochimica Acta, 2018, 260, 212-220.	2.6	38
22	Ln3+-mediated formation of luminescent ionogels. Journal of Materials Chemistry C, 2013, 1, 1607.	2.7	36
23	High power-output mechanical energy harvester based on flexible and transparent Au nanoparticle-embedded polymer matrix. Nano Energy, 2019, 55, 433-440.	8.2	36
24	Highly luminescent Eu3+-exchanged zeolite L crystals resulting from modification with silylated β-diketone. Journal of Materials Chemistry, 2012, 22, 9338.	6.7	29
25	Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement. Sensors, 2016, 16, 483.	2.1	25
26	Simulation and experiment study on adhesive ejection behavior in jetting dispenser. Journal of Adhesion Science and Technology, 2014, 28, 53-64.	1.4	23
27	Mechanical energy harvester based on cashmere fibers. Journal of Materials Chemistry A, 2018, 6, 11198-11204.	5.2	22
28	Shoepad nanogenerator based on electrospun PVDF nanofibers. Microsystem Technologies, 2019, 25, 3151-3156.	1.2	16
29	A Remote-Controlled Robotic System with Safety Protection Strategy Based on Force-Sensing and Bending Feedback for Transcatheter Arterial Chemoembolization. Micromachines, 2020, 11, 805.	1.4	16
30	Laterally Driven Resonant Pressure Sensor with Etched Silicon Dual Diaphragms and Combined Beams. Sensors, 2016, 16, 158.	2.1	14
31	Biomimetic Beetle-Inspired Flapping Air Vehicle Actuated by Ionic Polymer-Metal Composite Actuator. Applied Bionics and Biomechanics, 2018, 2018, 1-7.	0.5	14
32	Predicting Polymorphism of Electrospun Polyvinylidene Fluoride Membranes by Their Morphologies. Journal of Macromolecular Science - Physics, 2015, 54, 91-101.	0.4	13
33	Boosting current output of triboelectric nanogenerator by two orders of magnitude via hindering interfacial charge recombination. Nano Energy, 2021, 89, 106315.	8.2	11
34	Improve the Performance of Mechanoelectrical Transduction of Ionic Polymer-Metal Composites Based on Ordered Nafion Nanofibres by Electrospinning. Polymers, 2018, 10, 803.	2.0	9
35	Effect of Enhanced Squeezing Needle Structure on the Jetting Performance of a Piezostack-Driven Dispenser. Micromachines, 2019, 10, 850.	1.4	9
36	UV-Induced Photocatalytic Cashmere Fibers. Materials, 2017, 10, 1414.	1.3	8

LINGYUN WANG

#	Article	IF	CITATIONS
37	High-Q Wafer Level Package Based on Modified Tri-Layer Anodic Bonding and High Performance Getter and Its Evaluation for Micro Resonant Pressure Sensor. Sensors, 2017, 17, 599.	2.1	8
38	Application of Aerosol Jet technology in through-via interconnection for MEMS wafer-level packaging. Microsystem Technologies, 2015, 21, 451-455.	1.2	7
39	Direct-Write micro/nano-structure for flexible electronic manufacturing. , 2007, , .		6
40	Design and experiment of a jetting dispenser with compact amplifying mechanism and low stress in piezostack. Journal of Intelligent Material Systems and Structures, 2020, 31, 788-798.	1.4	4
41	Highâ€Performance Biomechanical Energy Harvester Enabled by Switching Interfacial Adhesion via Hydrogen Bonding and Phase Separation. Advanced Functional Materials, 2022, 32, .	7.8	4
42	Direct fabrication of polymer nanofiber membrane for piezoelectric vibration sensor. , 2011, , .		3
43	Nanofibrous Membranes with High Air Permeability and Fluffy Structure based on Low Temperature Electrospinning Technology. Fibers and Polymers, 2020, 21, 1466-1474.	1.1	3
44	Large-scale patterned nanofibers via tip-less electrospinning. , 2010, , .		2
45	A novel bulk micromachined tunneling gyroscope. , 2011, , .		2
46	Design and simulation of fully-symmetrical resonant pressure sensor. , 2012, , .		2
47	A Study on the Influence of the Nozzle Lead Angle on the Performance of Liquid Metal Electromagnetic Micro-Jetting. Micromachines, 2016, 7, 220.	1.4	2
48	Vibration modes interference in the MEMS resonant pressure sensor. International Journal of Modern Physics B, 2017, 31, 1750223.	1.0	2
49	Shorting out bonding method for multi-stack anodic bonding and its application in wafer-level packaging. Modern Physics Letters B, 2020, 34, 2050369.	1.0	2
50	Pattern deposition of electrosprayed polymer nanoparticles. , 2007, , .		1
51	Patterned deposition of PEO nanofibers. , 2009, , .		1
52	Etch-back in DDSOG process by ultrasonic agitation and application to tunneling gyroscope fabrication. , 2009, , .		1
53	Discussion on the lapping and polishing process of 4H-SiC wafer. , 2013, , .		1
54	Piezoelectric properties of PVDF nanofibers via non-uniform field electrospinning. , 2014, , .		1

4

#	Article	IF	CITATIONS
55	A Novel Bonding Architecture Based on AAO. , 2007, , .		Ο
56	Investigations on electrohydrodynamical drop-on-demand inkjet printing. , 2009, , .		0
57	The LQG controller design for micromachined tunneling gyroscope. , 2010, , .		Ο
58	Design and simulation of electrostatic inkjet head. , 2010, , .		0
59	Application of nonlinear driving in frequency matching of tunneling gyroscope. , 2012, , .		Ο
60	Visual servoing methods in robot-assist cell microinjection system. , 2013, , .		0
61	3d printing stereo networks microfluidic concentration gradient chip. , 2016, , .		0
62	Direct writing based on Weissenberg effect. , 2017, , .		0