Zefang Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/2790440/zefang-wang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16 3,365 20 20 h-index g-index citations papers 18.2 5.63 4,317 20 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
20	Tightly bound excitons in monolayer WSe(2). <i>Physical Review Letters</i> , 2014 , 113, 026803	7.4	762
19	Ising pairing in superconducting NbSe2 atomic layers. <i>Nature Physics</i> , 2016 , 12, 139-143	16.2	534
18	Controlling magnetism in 2D CrI by electrostatic doping. <i>Nature Nanotechnology</i> , 2018 , 13, 549-553	28.7	525
17	Strongly enhanced charge-density-wave order in monolayer NbSe2. <i>Nature Nanotechnology</i> , 2015 , 10, 765-9	28.7	474
16	Pressure-controlled interlayer magnetism in atomically thin CrI. <i>Nature Materials</i> , 2019 , 18, 1303-1308	27	178
15	Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. <i>Nature</i> , 2019 , 574, 76-80	50.4	162
14	Valley- and spin-polarized Landau levels in monolayer WSe. <i>Nature Nanotechnology</i> , 2017 , 12, 144-149	28.7	121
13	Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies. <i>Nanoscale</i> , 2015 , 7, 877-84	7.7	105
12	Valley magnetoelectricity in single-layer MoS. <i>Nature Materials</i> , 2017 , 16, 887-891	27	101
11	Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. <i>Nature Electronics</i> , 2019 , 2, 159-163	28.4	99
10	Probing the Spin-Polarized Electronic Band Structure in Monolayer Transition Metal Dichalcogenides by Optical Spectroscopy. <i>Nano Letters</i> , 2017 , 17, 740-746	11.5	80
9	Electrical Tuning of Interlayer Exciton Gases in WSe Bilayers. <i>Nano Letters</i> , 2018 , 18, 137-143	11.5	67
8	An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe. <i>Nature Materials</i> , 2018 , 17, 504-508	27	58
7	Probing many-body interactions in monolayer transition-metal dichalcogenides. <i>Physical Review B</i> , 2019 , 99,	3.3	34
6	Strongly Interaction-Enhanced Valley Magnetic Response in Monolayer WSe_{2}. <i>Physical Review Letters</i> , 2018 , 120, 066402	7.4	30
5	Strongly correlated excitonic insulator in atomic double layers. <i>Nature</i> , 2021 , 598, 585-589	50.4	18
4	Spin polarization separation of light reflected at Brewster angle. <i>Optics Letters</i> , 2012 , 37, 984-6	3	7

LIST OF PUBLICATIONS

3	Electrical switching of valley polarization in monolayer semiconductors. <i>Physical Review Materials</i> , 2020 , 4,	3.2	7	
2	Variation of polarization distribution of reflected beam caused by spin separation. <i>Optics Express</i> , 2012 , 20, 1975-80	3.3	3	
1	Spectral and spatial isolation of single tungsten diselenide quantum emitters using hexagonal boron nitride wrinkles. <i>APL Photonics</i> , 2020 , 5, 096105	5.2	0	