Stefano Beretta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2789727/publications.pdf Version: 2024-02-01

STEEANO REDETTA

#	Article	IF	CITATIONS
1	A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. International Journal of Fatigue, 2017, 94, 178-191.	5.7	418
2	Fatigue properties of AlSi10Mg obtained by additive manufacturing: Defect-based modelling and prediction of fatigue strength. Engineering Fracture Mechanics, 2018, 187, 165-189.	4.3	338
3	Safe life and damage tolerance aspects of railway axles – A review. Engineering Fracture Mechanics, 2013, 98, 214-271.	4.3	186
4	Qualification of AM parts: Extreme value statistics applied to tomographic measurements. Materials and Design, 2017, 131, 32-48.	7.0	182
5	STATISTICAL ANALYSIS OF DEFECTS FOR FATIGUE STRENGTH PREDICTION AND QUALITY CONTROL OF MATERIALS. Fatigue and Fracture of Engineering Materials and Structures, 1998, 21, 1049-1065.	3.4	160
6	Title is missing!. Extremes, 1999, 2, 123-147.	1.0	157
7	Probabilistic framework for multiaxial LCF assessment under material variability. International Journal of Fatigue, 2017, 103, 371-385.	5.7	140
8	Fatigue strength assessment of "as built―AlSi10Mg manufactured by SLM with different build orientations. International Journal of Fatigue, 2020, 139, 105737.	5.7	113
9	High cycle fatigue behavior and life prediction for additively manufactured 17-4 PH stainless steel: Effect of sub-surface porosity and surface roughness. Theoretical and Applied Fracture Mechanics, 2020, 106, 102477.	4.7	112
10	Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges. Progress in Materials Science, 2021, 121, 100786.	32.8	106
11	An investigation on the influence of rotary bending and press fitting on stress intensity factors and fatigue crack growth in railway axles. Engineering Fracture Mechanics, 2008, 75, 1906-1920.	4.3	92
12	On the application of Dang Van criterion to rolling contact fatigue. Wear, 2006, 260, 567-572.	3.1	87
13	Fracture mechanics and scale effects in the fatigue of railway axles. Engineering Fracture Mechanics, 2005, 72, 195-208.	4.3	83
14	Corrosion–fatigue of A1N railway axle steel exposed to rainwater. International Journal of Fatigue, 2010, 32, 952-961.	5.7	76
15	Fatigue behaviour of tensile-shear loaded clinched joints. Engineering Fracture Mechanics, 2006, 73, 178-190.	4.3	71
16	Defect tolerant design of automotive components. International Journal of Fatigue, 1997, 19, 319-333.	5.7	70
17	Largest-extreme-value distribution analysis of multiple inclusion types in determining steel cleanliness. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2001, 32, 517-523.	2.1	70
18	LCF behaviour and a comprehensive life prediction model for AlSi10Mg obtained by SLM. International Journal of Fatigue, 2018, 117, 47-62.	5.7	67

#	Article	IF	CITATIONS
19	Experiments and stochastic model for propagation lifetime of railway axles. Engineering Fracture Mechanics, 2006, 73, 2627-2641.	4.3	59
20	A new FE post-processor for probabilistic fatigue assessment in the presence of defects and its application to AM parts. International Journal of Fatigue, 2019, 125, 324-341.	5.7	59
21	Extreme value models for the assessment of steels containing multiple types of inclusion. Acta Materialia, 2006, 54, 2277-2289.	7.9	58
22	Evaluation of size effect on strain-controlled fatigue behavior of a quench and tempered rotor steel: Experimental and numerical study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 735, 423-435.	5.6	55
23	Experimental and numerical investigation on compressive fatigue strength of lattice structures of AlSi7Mg manufactured by SLM. International Journal of Fatigue, 2019, 128, 105181.	5.7	54
24	SIF and threshold for small cracks at small notches under torsion. Fatigue and Fracture of Engineering Materials and Structures, 2000, 23, 97-104.	3.4	52
25	Quality control of AlSi10Mg produced by SLM: Metallography versus CT scans for critical defect size assessment. Additive Manufacturing, 2019, 28, 394-405.	3.0	49
26	Overview on Microstructure- and Defect-Sensitive Fatigue Modeling of Additively Manufactured Materials. Jom, 2018, 70, 1853-1862.	1.9	48
27	Variable amplitude fatigue crack growth in a mild steel for railway axles: Experiments and predictive models. Engineering Fracture Mechanics, 2011, 78, 848-862.	4.3	47
28	An investigation about the influence of deep rolling on fatigue crack growth in railway axles made of a medium strength steel. Engineering Fracture Mechanics, 2014, 131, 587-601.	4.3	47
29	Defect acceptability under full-scale fretting fatigue tests for railway axles. International Journal of Fatigue, 2016, 86, 34-43.	5.7	46
30	Application of fatigue crack growth algorithms to railway axles and comparison of two steel grades. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2004, 218, 317-326.	2.0	45
31	Failure and damage tolerance aspects of railway components. Engineering Failure Analysis, 2011, 18, 534-542.	4.0	45
32	Killer notches: The effect of as-built surface roughness on fatigue failure in AlSi10Mg produced by laser powder bed fusion. Additive Manufacturing, 2020, 35, 101424.	3.0	44
33	Mechanisms of mixed mode fatigue crack propagation at rail butt-welds. International Journal of Fatigue, 2006, 28, 635-642.	5.7	42
34	More than 25Âyears of extreme value statistics for defects: Fundamentals, historical developments, recent applications. International Journal of Fatigue, 2021, 151, 106407.	5.7	41
35	Probabilistic fatigue assessment for railway axles and derivation of a simple format for damage calculations. International Journal of Fatigue, 2016, 86, 13-23.	5.7	40
36	Modelling of fatigue thresholds for small cracks in a mild steel by "Strip-Yield―model. Engineering Fracture Mechanics, 2009, 76, 1548-1561.	4.3	39

#	Article	IF	CITATIONS
37	Fatigue strength and surface quality of eutectoid steel wires. International Journal of Fatigue, 1999, 21, 329-335.	5.7	36
38	Mode II fatigue failures at rail butt-welds. Engineering Failure Analysis, 2005, 12, 157-165.	4.0	34
39	Fatigue strength for small shallow defects/cracks in torsion. International Journal of Fatigue, 2011, 33, 287-299.	5.7	34
40	Defect tolerance of a gamma titanium aluminide alloy. Procedia Engineering, 2011, 10, 3677-3682.	1.2	34
41	Crack closure effects during low cycle fatigue propagation in line pipe steel: An analysis with digital image correlation. Engineering Fracture Mechanics, 2015, 148, 441-456.	4.3	34
42	Challenges in Additive Manufacturing of Space Parts: Powder Feedstock Cross-Contamination and Its Impact on End Products. Materials, 2017, 10, 522.	2.9	34
43	An investigation of the effects of corrosion on the fatigue strength of AlN axle steel. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222, 129-143.	2.0	32
44	Stress intensity factor solutions for cracks in railway axles. Engineering Fracture Mechanics, 2011, 78, 764-792.	4.3	32
45	A log-normal format for failure probability under LCF: Concept, validation and definition of design curve. International Journal of Fatigue, 2016, 82, 2-11.	5.7	31
46	Short crack propagation in eutectoid steel wires. International Journal of Fatigue, 1996, 18, 451-456.	5.7	29
47	Fatigue failure mechanisms for AlSi10Mg manufactured by L-PBF under axial and torsional loads: The role of defects and residual stresses. International Journal of Fatigue, 2022, 162, 106903.	5.7	29
48	Defects and in-service fatigue life of truck wheels. Engineering Failure Analysis, 2003, 10, 45-57.	4.0	28
49	Fatigue crack propagation and threshold for shallow micro-cracks under out-of-phase multiaxial loading in a gear steel. Engineering Fracture Mechanics, 2010, 77, 1835-1848.	4.3	28
50	HCF resistance of AlSi10Mg produced by SLM in relation to the presence of defects. Procedia Structural Integrity, 2017, 7, 101-108.	0.8	27
51	An algorithm for evaluating crack closure from local compliance measurements. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25, 261-273.	3.4	26
52	Inclusions Size-based Fatigue Life Prediction Model of NiTi Alloy for Biomedical Applications. Shape Memory and Superelasticity, 2015, 1, 240-251.	2.2	26
53	Fatigue crack growth in Haynes 230 single crystals: an analysis with digital image correlation. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38, 583-596.	3.4	25
54	Structural integrity assessment of turbine discs in presence of potential defects: probabilistic analysis and implementation. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38, 1042-1055.	3.4	23

#	Article	IF	CITATIONS
55	A comparison of DIC-based techniques to measure crack closure in LCF. Theoretical and Applied Fracture Mechanics, 2018, 98, 230-243.	4.7	23
56	Fretting fatigue analysis of full-scale railway axles in presence of artificial micro-notches. Tribology International, 2020, 150, 106383.	5.9	23
57	A benchmark activity on the fatigue life assessment of AlSi10Mg components manufactured by L-PBF. Materials and Design, 2022, 218, 110713.	7.0	23
58	Experiments under pure shear and rolling contact fatigue conditions: Competition between tensile and shear mode crack growth. International Journal of Fatigue, 2013, 46, 67-80.	5.7	22
59	Short crack propagation in LCF regime at room and high temperature in Q & T rotor steels. International Journal of Fatigue, 2015, 75, 10-18.	5.7	22
60	From atmospheric corrosive attack to crack propagation for A1N railway axles steel under fatigue: Damage process and detection. Engineering Failure Analysis, 2015, 47, 252-264.	4.0	22
61	Load interaction effects in propagation lifetime and inspections of railway axles. International Journal of Fatigue, 2016, 91, 423-433.	5.7	22
62	Anisotropic mechanical and fatigue behaviour of Inconel718 produced by SLM in LCF and highâ€ŧemperature conditions. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 271-292.	3.4	22
63	A Strip-Yield algorithm for the analysis of closure evaluation near the crack tip. Engineering Fracture Mechanics, 2005, 72, 1222-1237.	4.3	21
64	Experimental investigation on statistics of extremes for three-dimensional distribution of non-metallic inclusions. Materials Science and Technology, 2002, 18, 1535-1543.	1.6	20
65	Effect of probability of detection upon the definition of inspection intervals for railway axles. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2007, 221, 409-417.	2.0	20
66	Local Stress Analysis of the Fatigue Behaviour of Adhesively Bonded Thick Composite Laminates. Journal of Adhesion, 2010, 86, 480-500.	3.0	20
67	MICROCRACK PROPAGATION AND MICROSTRUCTURAL PARAMETERS OF FATIGUE DAMAGE. Fatigue and Fracture of Engineering Materials and Structures, 1996, 19, 1107-1115.	3.4	19
68	Strain concentrations in BCC micro lattices obtained by AM. Procedia Structural Integrity, 2017, 7, 166-173.	0.8	19
69	Improving fatigue resistance of railway axles by cold rolling: Process optimisation and new experimental evidences. International Journal of Fatigue, 2020, 137, 105603.	5.7	19
70	Crack Growth Studies in Railway Axles under Corrosion Fatigue: Full-scale Experiments and Model Validation. Procedia Engineering, 2011, 10, 3650-3655.	1.2	18
71	Combined effect of surface anomalies and volumetric defects on fatigue assessment of AlSi7Mg fabricated via laser powder bed fusion. Additive Manufacturing, 2020, 34, 100918.	3.0	18
72	Fatigue assessment of root failures in HSLA steel welded joints: A comparison among local approaches. International Journal of Fatigue, 2009, 31, 102-110.	5.7	17

#	Article	IF	CITATIONS
73	Multiaxial fatigue criteria versus experiments for small crack under rolling contact fatigue. International Journal of Fatigue, 2014, 58, 181-192.	5.7	17
74	Analysis of Fatigue Strength of L-PBF AlSi10Mg with Different Surface Post-Processes: Effect of Residual Stresses. Metals, 2022, 12, 898.	2.3	17
75	Load spectra analysis and reconstruction for hydraulic pump components. Fatigue and Fracture of Engineering Materials and Structures, 2008, 31, 251-261.	3.4	16
76	Statistics of Extremes Analysis of Nonmetallic Inclusions Based on 3D Inspection. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2001, 87, 748-755.	0.4	15
77	Application of multiaxial fatigue criteria to materials containing defects. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26, 551-559.	3.4	15
78	A comparison of Mode III threshold under simple shear and RCF conditions. Engineering Fracture Mechanics, 2011, 78, 1742-1755.	4.3	15
79	A probabilistic framework to define the design stress and acceptable defects under combined-cycle fatigue conditions. Engineering Fracture Mechanics, 2020, 224, 106784.	4.3	15
80	THE EFFECT OF SAMPLE SIZE ON THE CONFIDENCE OF ENDURANCE FATIGUE TESTS. Fatigue and Fracture of Engineering Materials and Structures, 1995, 18, 129-139.	3.4	14
81	Design review of a freight railway axle: fatigue damage versus damage tolerance. Materialwissenschaft Und Werkstofftechnik, 2011, 42, 1099-1104.	0.9	14
82	Reliability assessment of hydraulic cylinders considering service loads and flaw distribution. International Journal of Pressure Vessels and Piping, 2012, 98, 76-88.	2.6	14
83	Analysis of strain and stress concentrations in micro-lattice structures manufactured by SLM. Rapid Prototyping Journal, 2019, 26, 370-380.	3.2	14
84	Structural integrity analysis of a tram-way: load spectra and material damage. Wear, 2005, 258, 1255-1264.	3.1	13
85	An approximation for the cyclic state of stress ahead of cracks and its implications under fatigue crack growth. Engineering Fracture Mechanics, 2011, 78, 573-584.	4.3	13
86	Semi-probabilistic method for residual lifetime of aluminothermic welded rails with foot cracks. Theoretical and Applied Fracture Mechanics, 2016, 85, 398-411.	4.7	13
87	Digital image correlation-based analysis of strain accumulation on a duplex Î ³ -TiAl. Intermetallics, 2016, 75, 42-50.	3.9	13
88	Short cracks growth in low cycle fatigue under multiaxial in-phase loading. International Journal of Fatigue, 2018, 107, 49-59.	5.7	13
89	Analysis of Crack Growth at <i>R</i> =â^'1 Under Variable Amplitude Loading on a Steel for Railway Axles. Journal of ASTM International, 2008, 5, 1-13.	0.2	13
90	A model for fatigue strength of welded lap joints. Fatigue and Fracture of Engineering Materials and Structures, 2005, 28, 257-264.	3.4	12

#	Article	IF	CITATIONS
91	Fatigue limit assessment on seamless tubes in presence of inhomogeneities: Small crack model vs. full scale testing experiments. International Journal of Fatigue, 2012, 41, 150-157.	5.7	11
92	Instability analysis of pressurized pipes with longitudinal surface cracks. International Journal of Pressure Vessels and Piping, 2015, 126-127, 48-57.	2.6	11
93	Near-tip closure and cyclic plasticity in Ni-based single crystals. International Journal of Fatigue, 2016, 89, 53-65.	5.7	11
94	Fatigue Sensitivity to Small Defects of a Gamma–Titanium–Aluminide Alloy. Journal of ASTM International, 2012, 9, 1-12.	0.2	11
95	Estimate of maximum pore size in keyhole laser welding of carbon steel. Science and Technology of Welding and Joining, 2009, 14, 106-116.	3.1	10
96	Strain Accumulation in TiAl Intermetallics via High-resolution Digital Image Correlation (DIC). Procedia Engineering, 2014, 74, 443-448.	1.2	10
97	Simulation of Fatigue Crack Propagation in Railway Axles. Journal of ASTM International, 2005, 2, 12040.	0.2	10
98	Defect tolerance assessment of a helicopter component subjected to multiaxial load. Engineering Fracture Mechanics, 2010, 77, 2479-2490.	4.3	9
99	Investigation of Fatigue Crack Growth in Full-Scale Railway Axles Subjected to Service Load Spectra: Experiments and Predictive Models. Metals, 2021, 11, 1427.	2.3	9
100	Fatigue Strength in Presence of Inhomogeneities: Influence of Constraint. Journal of ASTM International, 2006, 3, 13199.	0.2	9
101	Fatigue Properties and Design Criteria of a Gamma Titanium Aluminide Alloy. Key Engineering Materials, 0, 465, 531-534.	0.4	8
102	Analysis of Cu-wire pull and shear test failure modes under ageing cycles and finite element modelling of Si-crack propagation. Microelectronics Reliability, 2014, 54, 2501-2512.	1.7	8
103	Fatigue strength assessment of railway axles considering small-scale tests and damage calculations. Procedia Structural Integrity, 2017, 4, 11-18.	0.8	8
104	Evaluation of Size Effect in Low Cycle Fatigue for Q&T rotor steel. Procedia Structural Integrity, 2017, 7, 368-375.	0.8	8
105	Analysis of prospective SIF and shielding effect for cylindrical rough surfaces obtained by L-PBF. Engineering Fracture Mechanics, 2021, 256, 107983.	4.3	8
106	Progress in the measurement of the cyclic R-curve and its application to fatigue assessment. Engineering Fracture Mechanics, 2022, 260, 108122.	4.3	8
107	MICROSTRUCTURE AND FATIGUE PROPERTIES OF A WELDED DUPLEX STAINLESS STEEL. Fatigue and Fracture of Engineering Materials and Structures, 1996, 19, 647-654.	3.4	7
108	Corrosion-fatigue under Rainwater of a Q&T Steel: Experiments and Probabilistic Description. Procedia Engineering, 2014, 74, 12-17.	1.2	7

#	Article	IF	CITATIONS
109	RAAI Project: Life-prediction and prognostics for railway axles under corrosion-fatigue damage. Procedia Structural Integrity, 2017, 4, 64-70.	0.8	7
110	The Effect of Inclusions on Fatigue Properties for Nitinol. , 2013, , 18-34.		7
111	Stress Intensity Factor calculation from displacement fields. Frattura Ed Integrita Strutturale, 2017, 11, 269-276.	0.9	7
112	Multiaxial static strength of a 3D printed metallic lattice structure exhibiting brittle behavior. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 3499-3516.	3.4	7
113	Fatigue crack growth in low cycle fatigue: an analysis of crack closure based on image correlation. Procedia Structural Integrity, 2016, 1, 158-165.	0.8	6
114	Quality control of cast iron: extreme value statistics applied to CT measurements. Procedia Structural Integrity, 2017, 7, 275-282.	0.8	6
115	Comparison of SIF solutions for cracks under rotating bending and their impact upon propagation lifetime of railway axles. Procedia Structural Integrity, 2018, 8, 610-617.	0.8	6
116	Shortâ€crack thresholds and propagation in an AISIÂ4340Âsteel under the effect of SP residual stresses. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 1275-1290.	3.4	6
117	Crack-closure simulations of Ni-based super-alloy polycrystal, a comparison between experiments and crystal plasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 740-741, 368-380.	5.6	6
118	Simulation of bridge?heavy road vehicle interaction and assessment of structure durability. International Journal of Heavy Vehicle Systems, 2003, 10, 70.	0.2	5
119	A Tool for the Structural Integrity Assessment of Turbine Disks: Probabilistic and Numerical Background. , 2013, , .		5
120	Expression of Additive Manufacturing Surface Irregularities through a Flaw-Based Assessment. , 2020, , 234-249.		5
121	Probabilistic Framework for Defect Tolerant Fatigue Assessment of Additively Manufactured Parts Applied to a Space Component. , 2020, , 526-539.		5
122	Response of an aluminium Schwarz triply periodic minimal surface lattice structure under constant amplitude and random fatigue. International Journal of Fatigue, 2022, 163, 107020.	5.7	5
123	Multiaxial fatigue and defect assessment of truck stabilisers. International Journal of Vehicle Design, 2006, 40, 212.	0.3	4
124	Failure investigation and design improvements of Al 7075 piston for hydraulic actuators. Engineering Failure Analysis, 2006, 13, 18-31.	4.0	4
125	Determination of inspection intervals for welded rail joints on a regional network. Procedia Structural Integrity, 2017, 4, 87-94.	0.8	4
126	Experiments on crack propagation and threshold at defects in press-fits of railway axles. Procedia Structural Integrity, 2017, 7, 484-491.	0.8	4

#	Article	IF	CITATIONS
127	LCF and crack growth: recent results obtained by DIC. MATEC Web of Conferences, 2018, 165, 01001.	0.2	4
128	Numerical and Experimental Investigation of Cumulative Fatigue Damage under Random Dynamic Cyclic Loads of Lattice Structures Manufactured by Laser Powder Bed Fusion. Metals, 2021, 11, 1395.	2.3	4
129	Fatigue Crack Growth in Blade Attachment of Turbine Disks: Experimental Tests and Life Prediction. Materials Performance and Characterization, 2015, 4, 20140036.	0.3	4
130	Superposition of Manoeuvres and Load Spectra Extrapolation. Applied Mechanics and Materials, 2006, 5-6, 255-262.	0.2	3
131	A numerical 3D model to study ratcheting damage of a tramcar line. Wear, 2010, 268, 737-746.	3.1	3
132	Discussion of models for LCF small crack growth. Procedia Engineering, 2011, 10, 3642-3649.	1.2	3
133	Research on corrosion fatigue of railway axles. Insight: Non-Destructive Testing and Condition Monitoring, 2011, 53, 361-367.	0.6	3
134	Analysis of Fatigue Damage Accumulation in TiAl Intermetallics. Key Engineering Materials, 0, 592-593, 30-35.	0.4	3
135	A Simple Format for the Definition of Safety Factors for LCF. , 2014, , .		3
136	Critical Speed of Flawed Rotors: Global vs Local Approach. , 2014, , .		3
137	Effect of the Microstructure on the Fatigue Strength of a TiAl Intermetallic Alloy Produced by Additive Manufacturing. Materials Research Society Symposia Proceedings, 2015, 1760, 127.	0.1	3
138	A low-cycle fatigue life prediction model for Alloy625 arc wire welding repairs of gas turbine blades. Theoretical and Applied Fracture Mechanics, 2020, 107, 102558.	4.7	3
139	Mixed mode fatigue crack propagation in a ferritic–perlitic cold drawn tube. Engineering Fracture Mechanics, 2008, 75, 845-856.	4.3	2
140	Models for Small Crack Growth in LCF at Room Temperature and High Temperature. , 2012, , .		2
141	A Simple Format for Failure Probability under LCF and its Application to a Complex Component. , 2014, 3, 2098-2103.		2
142	Load Interaction Effects in Medium and High Strength Steels for Railway Axles. , 2014, 3, 1965-1970.		2
143	Fatigue Crack Propagation in Haynes 230: A Comparison between Single and Polycrystal Crack Closure Levels. Solid State Phenomena, 0, 258, 243-248.	0.3	2
144	Experimental and simulated displacement in cracked specimen of P91 steel under creep conditions. Procedia Structural Integrity, 2016, 2, 911-918.	0.8	2

#	Article	IF	CITATIONS
145	Fatigue assessment of old design axles: Service simulation and life extension. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230, 572-584.	2.0	2
146	Strain Localizations in Notches for a Coarse-Grained Ni-Based Superalloy: Simulations and Experiments. Materials, 2021, 14, 564.	2.9	2
147	Load Interaction Effects in a Medium Strength Steel for Railway Axles. Materials Performance and Characterization, 2015, 4, 20140033.	0.3	2
148	Inclusion control and fatigue properties of NiTi wires for medical applications. MATEC Web of Conferences, 2014, 12, 04013.	0.2	1
149	Probabilistic integrity assessment of turbine disks in presence of potential defects. MATEC Web of Conferences, 2014, 12, 00001.	0.2	1
150	Crack propagation under combined cycle fatigue for a precipitation hardened steel. Procedia Structural Integrity, 2017, 7, 214-221.	0.8	1
151	The Challenge of Multiple Particles in Extreme Value Inclusion Rating. Journal of ASTM International, 2006, 3, 14041.	0.2	1
152	Are Multiaxial Fatigue Criteria Appropriate When Steels with Surface Defects are Subjected to Rolling Contact Fatigue. Journal of ASTM International, 2006, 3, 100416.	0.2	1
153	Crack-Closure Measurements in Low-Cycle Fatigue With Digital Image Correlation. Materials Performance and Characterization, 2016, 5, 232-248.	0.3	1
154	A novel test rig for narrow band random fatigue under rotating bending. International Journal of Fatigue, 1997, 19, 457-460.	5.7	0
155	Fatigue Assessment of Tubular Automotive Components in Presence of Inhomogeneities. , 2004, , 791.		0
156	An investigation on the applicability of eddy currents NDT to the inspection of corrosion fatigue phenomena in railway axles. , 2011, , .		0
157	Fitness for Purpose Design of a Steel Cylinder for Hydrogen-Natural Gas Blends. , 2011, , .		0
158	Assessment of Fatigue Sensitivity to Defects of a TiAl Alloy Produced by Electron Beam Melting (EBM). , 2012, , .		0
159	Assessment of Fatigue Reliability of Power Transmission Gearing for Aerospace Propulsion Applications. , 2013, , .		0
160	Microscopic Analysis of Fatigue Damage Accumulation in TiAl Intermetallics. , 2014, , .		0
161	Acceptability of Defects Under Combined Cycle Fatigue for a Precipitation Hardened Steel. , 2018, , .		0
162	Structural Integrity Assessment of ORC Turbine Tie-Rods: An Analysis Based on Elastic Shakedown and Fracture Mechanics. , 2018, , .		0

#	ARTICLE	IF	CITATIONS
163	Temperature Dependence of Crack Growth Under LCF for Different Alloys. , 2018, , .		0
164	ModeÂIII threshold under Rolling Contact Fatigue and development of aÂtest gearbox for planet gears. Forschung Im Ingenieurwesen/Engineering Research, 0, , 1.	1.6	0