Aziz Kalilur Rahiman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2789344/publications.pdf

Version: 2024-02-01

77 papers

2,196 citations

257450 24 h-index 243625 44 g-index

79 all docs

79 docs citations

79 times ranked

2858 citing authors

#	Article	IF	CITATIONS
1	Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomedicine and Pharmacotherapy, 2017, 89, 1067-1077.	5.6	316
2	Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. Journal of Photochemistry and Photobiology B: Biology, 2018, 180, 243-252.	3.8	196
3	In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess and Biosystems Engineering, 2017, 40, 943-957.	3.4	133
4	Synthesis, characterization, and antimicrobial activities of nickel(II) and copper(II) Schiff-base complexes. Journal of Coordination Chemistry, 2010, 63, 136-146.	2.2	88
5	Biosynthesis of Zinc Oxide Nanoparticles Using Plant Extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, Antibacterial, Antioxidant and Anti-proliferative Studies. BioNanoScience, 2017, 7, 530-545.	3.5	82
6	Targeting of DNA molecules, BSA/c-Met tyrosine kinase receptors and anti-proliferative activity of bis(terpyridine)copper(<scp>ii</scp>) complexes. Dalton Transactions, 2016, 45, 7794-7814.	3.3	81
7	New pyridazine-based binuclear nickel(<scp>ii</scp>), copper(<scp>ii</scp>) and zinc(<scp>ii</scp>) complexes as prospective anticancer agents. New Journal of Chemistry, 2016, 40, 2451-2465.	2.8	59
8	Copper complexes as prospective anticancer agents: <i>in vitro</i> and <i>in vivo</i> evaluation, selective targeting of cancer cells by DNA damage and S phase arrest. RSC Advances, 2018, 8, 16973-16990.	3.6	57
9	Novel unsymmetrical macrocyclic dicompartmental binuclear copper(II) complexes bearing 4- and 6-coordination sites: Electrochemical, magnetic, catalytic and antimicrobial studies. Polyhedron, 2008, 27, 2931-2938.	2.2	54
10	Structural modeling, in vitro antiproliferative activity, and the effect of substituents on the DNA fastening and scission actions of heteroleptic copper(<scp>ii</scp>) complexes with terpyridines and naproxen. New Journal of Chemistry, 2015, 39, 7895-7911.	2.8	54
11	Synthesis, electrochemical, catalytic and antimicrobial activities of novel unsymmetrical macrocyclic dicompartmental binuclear nickel(II) complexes. Polyhedron, 2008, 27, 1867-1874.	2.2	50
12	Hydroxy, carboxylic and amino acid functionalized superparamagnetic iron oxide nanoparticles: Synthesis, characterization and in vitro anti-cancer studies. Journal of Chemical Sciences, 2015, 127, 1155-1166.	1.5	43
13	Manganese(III) porphyrin-encapsulated Ti,Si-mesoporous molecular sieves as heterogeneous catalysts for the epoxidation of alkenes. Applied Catalysis A: General, 2006, 314, 216-225.	4.3	42
14	Heteroleptic silver(I) complexes with 2,2′:6′,2″-terpyridines and naproxen: DNA interaction, EGFR/VEGFR2 kinase, growth inhibition and cell cycle arrest studies. Materials Science and Engineering C, 2017, 76, 601-615.	7.3	39
15	DNA binding, molecular docking and apoptotic inducing activity of nickel(<scp>ii</scp>), copper(<scp>ii</scp>) and zinc(<scp>ii</scp>) complexes of pyridine-based tetrazolo[1,5-a]pyrimidine ligands. RSC Advances, 2014, 4, 60816-60830.	3.6	38
16	Synthesis of new  end-off' μ-phenoxo and bis-μ-acetato tri-bridged copper(II), nickel(II) and zinc(II) complexes: Spectral, magnetic, electrochemical and catalytic studies. Polyhedron, 2006, 25, 2859-2868.	2.2	37
17	Synthesis, spectral, magnetic, electrochemical and kinetic studies of copper(II), nickel(II) and zinc(II) acetate complexes derived from phenol based †end-off†ligands: Effect of p-substituents. Polyhedron, 2007, 26, 3993-4002.	2.2	37
18	Antioxidant, DNA binding and nuclease activities of heteroleptic copper(II) complexes derived from 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols and diimines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 133, 785-793.	3.9	37

#	Article	IF	Citations
19	Catalytic oxidation of alkenes by manganese(III) porphyrin-encapsulated Al, V, Si-mesoporous molecular sieves. Inorganica Chimica Acta, 2009, 362, 1491-1500.	2.4	35
20	Antioxidant, DNA interaction, VEGFR2 kinase, topoisomerase I and in vitro cytotoxic activities of heteroleptic copper(II) complexes of tetrazolo[1,5-a]pyrimidines and diimines. Materials Science and Engineering C, 2016, 68, 366-382.	7. 3	35
21	Mixed-ligand copper(II) phenolate complexes: Synthesis, spectral characterization, phosphate-hydrolysis, antioxidant, DNA interaction and cytotoxic studies. Journal of Molecular Structure, 2015, 1080, 88-98.	3.6	33
22	Antibacterial, DNA interaction and cytotoxic activities of pendant-armed polyamine macrocyclic dinuclear nickel(II) and copper(II) complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 129, 400-414.	3.9	32
23	Magneto-structural correlation, antioxidant, DNA interaction and growth inhibition activities of new chloro-bridged phenolate complexes. RSC Advances, 2014, 4, 42855-42872.	3.6	31
24	Cationic vanadyl porphyrin-encapsulated mesoporous Al/V-MCM-41 as heterogeneous catalysts for the oxidation of alkenes. Inorganica Chimica Acta, 2009, 362, 1810-1818.	2.4	27
25	Mononuclear zinc(II) complexes of 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols: Synthesis, structural characterization, DNA binding and cheminuclease activities. Journal of Molecular Structure, 2014, 1062, 147-157.	3.6	24
26	Synthesis, characterization, biological evaluation and docking studies of macrocyclic binuclear manganese(II) complexes containing 3,5-dinitrobenzoyl pendant arms. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 143, 49-58.	3.9	24
27	Mixed-ligand binuclear copper(II) complex of 5-methylsalicylaldehyde and 2,2′-bipyridyl: Synthesis, crystal structure, DNA binding and nuclease activity. Journal of Chemical Sciences, 2014, 126, 783-792.	1.5	23
28	Synthesis, spectral, magnetic, electrochemical and catalytic studies of cyclam-based copper(II) and nickel(II) complexes–effect of N-substitution. Journal of Coordination Chemistry, 2008, 61, 3594-3609.	2,2	21
29	Epoxidation of Styrene by Fe, Mn, and V Metalloporphyrins Encapsulated Si, Al, Ti And V- Mcm-41. Catalysis Letters, 2009, 127, 175-182.	2.6	21
30	Theoretical calculations, DNA interaction, topoisomerase I and phosphatidylinositol-3-kinase studies of water soluble mixed-ligand nickel(II) complexes. Chemico-Biological Interactions, 2016, 248, 21-35.	4.0	21
31	In vitro and in vivo anti-proliferative evaluation of bis(4′-(4-tolyl)-2,2′:6′,2″-terpyridine)copper(II) complagainst Ehrlich ascites carcinoma tumors. Journal of Biological Inorganic Chemistry, 2017, 22, 1109-1122.	lex 2.6	20
32	Bis(thiosemicarbazone)copper(I) Complexes as Prospective Therapeutic Agents: Interaction with DNA/BSA Molecules, and In Vitro and InÂVivo Antiâ€Proliferative Activities. ChemistrySelect, 2018, 3, 7100-7111.	1.5	20
33	Catechol oxidase and phenoxazinone synthase mimicking activities of mononuclear Fe(III) and Co(III) complexes of amino-bis(phenolate)-based mixed ligands: Synthesis, spectral and electrochemical studies. Inorganica Chimica Acta, 2019, 495, 118988.	2.4	19
34	Evaluation of photocatalytic, antimicrobial and anticancer activities of ZnO/MS (M = Zn, Cd or Pb) core/shell nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 225, 20-32.	3.5	18
35	Biocompatibility, <i>in Vitro</i> Antiproliferative, and <i>in Silico</i> EGFR/VEGFR2 Studies of Heteroleptic Metal(II) Complexes of Thiosemicarbazones and Naproxen. Chemical Research in Toxicology, 2019, 32, 1554-1571.	3.3	18
36	Metalloporphyrins encapsulated mesoporous molecular sieves as efficient heterogeneous catalysts for oxidation of cyclohexene with iodosylbenzene. Journal of Porous Materials, 2010, 17, 711-718.	2.6	16

#	Article	IF	CITATIONS
37	Dinuclear manganese(II) complexes of hexaazamacrocycles bearing N-benzoylated pendant separated by aromatic spacers: Antibacterial, DNA interaction, cytotoxic and molecular docking studies. Journal of Photochemistry and Photobiology B: Biology, 2015, 153, 247-260.	3.8	15
38	Thiosemicarbazone-based bifunctional chemosensors for simultaneous detection of inorganic cations and fluoride anion. Journal of Molecular Structure, 2020, 1219, 128640.	3.6	15
39	Dinuclear phenoxo-bridged "end-off―complexes containing a piperazine that shows chemical nuclease and cytotoxic activities. Journal of Coordination Chemistry, 2014, 67, 1794-1808.	2.2	14
40	Heteroscorpionateâ€based heteroleptic copper(II) complexes: Antioxidant, molecular docking and in vitro cytotoxicity studies. Applied Organometallic Chemistry, 2017, 31, e3809.	3.5	14
41	Theoretical investigation, biological evaluation and VEGFR2 kinase studies of metal(II) complexes derived from hydrotris(methimazolyl)borate. Journal of Photochemistry and Photobiology B: Biology, 2016, 155, 66-77.	3.8	12
42	Pyridazine-based heteroleptic copper(II) complexes as potent anticancer drugs by inducing apoptosis and S-phase arrest in breast cancer cell. Inorganica Chimica Acta, 2018, 482, 160-169.	2.4	12
43	In vitro cytotoxicity efficacy of phytosynthesized Ag/ZnO nanocomposites using Murraya koenigii and Zingiber officinale extracts. Materials Chemistry and Physics, 2021, 272, 124903.	4.0	12
44	Silver(I) metallodrugs of thiosemicarbazones and naproxen: biocompatibility, in vitro anti-proliferative activity and in silico interaction studies with EGFR, VEGFR2 and LOX receptors. Toxicology Research, 2020, 9, 28-44.	2.1	11
45	Electrochemical, catalytic and antimicrobial activities of N-functionalized cyclam based unsymmetrical dicompartmental binuclear nickel(II) complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 849-854.	3.9	10
46	Synthesis of new unsymmetrical "end-off―phenoxo bridged copper(II), nickel(II) and zinc(II) complexes: spectral, magnetic, electrochemical, catalytic, and antimicrobial studies. Journal of Coordination Chemistry, 2009, 62, 1356-1372.	2.2	10
47	N-benzoylated 1,4,8,11-tetraazacyclotetradecane and their copper(II) and nickel(II) complexes: Spectral, magnetic, electrochemical, crystal structure, catalytic and antimicrobial studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 77, 92-100.	3.9	10
48	Spectroscopic, Redox and Biological Studies of Push-Pull Porphyrins and Their Metal Complexes. Bulletin of the Korean Chemical Society, 2010, 31, 2656-2664.	1.9	10
49	Template Synthesis of Polyaza Macrocyclic Copper(II) and Nickel(II) Complexes: Spectral Characterization and Antimicrobial Studies. Bulletin of the Korean Chemical Society, 2012, 33, 2279-2286.	1.9	10
50	Synthesis, spectral, magnetic, electrochemical and kinetic studies of copper(II), nickel(II) and zinc(II) complexes derived from a phenol-based unsymmetrical "end-off―ligand. Journal of Coordination Chemistry, 2009, 62, 600-612.	2.2	9
51	New 14-membered trans-di-substituted †tet-a†macrocycles and their copper(II) and nickel(II) complexes: Spectral, magnetic, electrochemical, crystal structure, catalytic and antimicrobial studies. Journal of Molecular Structure, 2011, 989, 91-100.	3 . 6	9
52	Synthesis, characterization, crystal structure and antimicrobial activities of new trans N,N-substituted macrocyclic dioxocyclam and their copper(II) and nickel(II) complexes. Polyhedron, 2011, 30, 106-113.	2.2	9
53	Tetrazolo[1,5- <i>a</i>]pyrimidine-based metal(II) complexes as therapeutic agents: DNA interaction, targeting topoisomerase I and cyclin-dependent kinase studies. Inorganic and Nano-Metal Chemistry, 2018, 48, 569-582.	1.6	9
54	N-functionalized cyclam based trinuclear copper(II) complexes: electrochemical, magnetic, catalytic and antimicrobial studies. Transition Metal Chemistry, 2009, 34, 33-41.	1.4	8

#	Article	IF	CITATIONS
55	Theoretical, photophysical and biological investigations of an organic charge transfer compound 2-aminobenzimidazolium-2-oxyisoindolate-1,3-dione-2-hydroxyisoindoline-1,3-dione. RSC Advances, 2016, 6, 60336-60348.	3.6	8
56	Heteroleptic metal(II) complexes of hydrotris(methimazolyl)borate and diimines: Synthesis, theoretical calculations, antimicrobial, antioxidant, inÂvitro cytotoxicity and molecular docking studies. Microbial Pathogenesis, 2017, 109, 120-130.	2.9	8
57	DNA profiling and in vitro cytotoxicity studies of tetrazolo[1,5-a]pyrimidine-based copper(II) complexes. BioMetals, 2019, 32, 611-626.	4.1	8
58	Antidiabetic activity of phytosynthesized Ag/CuO nanocomposites using Murraya koenigii and Zingiber officinale extracts. Journal of Drug Delivery Science and Technology, 2022, 67, 102838.	3.0	8
59	Synthesis, electrochemical, magnetic, catalytic and antimicrobial studies of N-functionalized cyclam based trinuclear copper(II) and nickel(II) complexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 66, 297-306.	1.6	7
60	Phosphate-hydrolysis, antioxidant, DNA binding, and nuclease activities promoted by heteroleptic nickel(II) phenolate complexes. Medicinal Chemistry Research, 2015, 24, 2441-2453.	2.4	7
61	In Vitro Antioxidant and Insulin Mimetic Activities of Heteroleptic Oxovanadium(IV) Complexes with Thiosemicarbazones and Naproxen. ChemistrySelect, 2020, 5, 6245-6254.	1.5	7
62	New â€~side-off' coordination asymmetric homobinuclear Ni(II) and heterobinuclear Ni(II)Zn(II) complexes as models for hydrolysis of p-nitrophenylphosphate: Synthesis, characterization and electrochemical studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 105, 245-250.	3.9	6
63	Bis(imidazol-1-yl)methane-based heteroscorpionate metal(II) complexes: Theoretical, antimicrobial, antioxidant, inAvitro cytotoxicity and c-Met tyrosine kinase studies. Journal of Molecular Structure, 2019, 1196, 567-577.	3.6	6
64	<i>In vitro</i> antiâ€proliferative and <i>in silico</i> docking studies of heteroleptic copper(II) complexes of pyridazineâ€based ligands and ciprofloxacin. Applied Organometallic Chemistry, 2019, 33, e4946.	3.5	6
65	Synthesis, characterization and bioactive evaluation of copper(II) 5,10,15,20-tetrakis $[\hat{1}\pm,$	A _{3.9}	5
66	Heterogeneous Oxidation of Styrene Using Iron(III) Porphyrin Encapsulated in Mesoporous Molecular Sieves. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 608-615.	0.6	5
67	Evaluation of Antimicrobial and Antidiabetic Activities of Ag@SiO2 Core–Shell Nanoparticles Synthesized with Diverse Shell Thicknesses. Journal of Cluster Science, 2020, 31, 739-749.	3.3	5
68	4-Functionalized terpyridine derivative as dual responsive chemosensor for biologically important inorganic cations and fluoride anion. Journal of the Iranian Chemical Society, 2020, 17, 1237-1248.	2.2	5
69	N-functionalized, cyclam-based unsymmetrical dicompartmental binuclear copper(II) complexes containing 4- and 6-coordination sites: electrochemical, magnetic, catalytic, and antimicrobial studies. Journal of Coordination Chemistry, 2009, 62, 3073-3084.	2.2	4
70	Synthesis and characterization of new unsymmetrical â€~side-off' tetra and hexa coordinate homobinuclear Cu(II) and heterobinuclear Cu(II)–Zn(II) complexes: Magnetic, electrochemical and kinetic studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 94, 334-339.	3.9	4
71	Theoretical, biological and in silico studies of pendant-armed heteroleptic copper(II) phenolate complexes. Journal of Molecular Structure, 2018, 1161, 306-319.	3.6	4
72	Heteroleptic silver(I), nickel (II) and copper (II) complexes of N ⁴ â€substituted thiosemicarbazones and ciprofloxacin: Theoretical, <i>in vitro</i> antiâ€proliferative, and <i>in silico</i> molecular modelling and pharmacokinetics studies. Applied Organometallic Chemistry, 0, , .	3.5	4

#	Article	IF	CITATIONS
73	Antioxidant, DNA interaction, molecular docking and cytotoxicity studies of aminoethylpiperazineâ€containing macrocyclic binuclear copper(II) complexes. Applied Organometallic Chemistry, 2017, 31, e3669.	3.5	3
74	Theoretical, antimicrobial, antioxidant, <i>in vitro</i> cytotoxicity, and cyclin-dependent kinase 2 inhibitor studies of metal(II) complexes with bis(imidazol-1-yl)methane-based heteroscorpionate ligands. Journal of Coordination Chemistry, 2019, 72, 2015-2034.	2.2	2
75	Ferrocenylimine-based homoleptic metal(II) complexes: Theoretical, biocompatibility, in vitro anti-proliferative, and in silico molecular docking and pharmacokinetics studies. Journal of Molecular Structure, 2022, 1250, 131905.	3.6	2
76	Theoretical, single crystal and molecular docking analysis of tetrazolo[1,5-a]pyrimidine-6-carboxylate derivatives. Journal of Molecular Structure, 2022, 1250, 131706.	3.6	1
77	Hexaaquamanganese(II) bis[hydrotris(3-methyl-2-thioxo-1-imidazolyl) borate] Tetrahydrate: A Non-coordinating Borate Ligand with Manganese(II) Metal Ion. Molecular Crystals and Liquid Crystals, 2015, 608, 190-197.	0.9	0