
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2789225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Science of the Total Environment, 2011, 409, 3578-3594.	3.9	940
2	Application of Multicriteria Decision Analysis in Environmental Decision Making. Integrated Environmental Assessment and Management, 2005, 1, 95.	1.6	710
3	Changing the resilience paradigm. Nature Climate Change, 2014, 4, 407-409.	8.1	487
4	From comparative risk assessment to multi-criteria decision analysis and adaptive management: Recent developments and applications. Environment International, 2006, 32, 1072-1093.	4.8	441
5	Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems. Risk Analysis, 2013, 33, 356-367.	1.5	417
6	Resilience and sustainability: Similarities and differences in environmental management applications. Science of the Total Environment, 2018, 613-614, 1275-1283.	3.9	306
7	Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic. Environment Systems and Decisions, 2020, 40, 222-243.	1.9	292
8	Resilience and efficiency in transportation networks. Science Advances, 2017, 3, e1701079.	4.7	241
9	Weight-of-evidence evaluation in environmental assessment: Review of qualitative and quantitative approaches. Science of the Total Environment, 2009, 407, 5199-5205.	3.9	220
10	Validating Resilience and Vulnerability Indices in the Context of Natural Disasters. Risk Analysis, 2017, 37, 982-1004.	1.5	212
11	Metrics for energy resilience. Energy Policy, 2014, 72, 249-256.	4.2	199
12	Increasing Scientific Confidence in Adverse Outcome Pathways: Application of Tailored Bradford-Hill Considerations for Evaluating Weight of Evidence. Regulatory Toxicology and Pharmacology, 2015, 72, 514-537.	1.3	198
13	Resilience metrics for cyber systems. Environment Systems and Decisions, 2013, 33, 471-476.	1.9	194
14	Operational resilience: concepts, design and analysis. Scientific Reports, 2016, 6, 19540.	1.6	183
15	Risk-based classification system of nanomaterials. Journal of Nanoparticle Research, 2009, 11, 757-766.	0.8	178
16	Bouncing forward: a resilience approach to dealing with COVID-19 and future systemic shocks. Environment Systems and Decisions, 2020, 40, 174-184.	1.9	162
17	Nanotoxicology and nanomedicine: making hard decisions. Nanomedicine: Nanotechnology, Biology, and Medicine, 2008, 4, 167-171.	1.7	160
18	Multi-criteria decision analysis and environmental risk assessment for nanomaterials. Journal of Nanoparticle Research, 2007, 9, 543-554.	0.8	152

#	Article	IF	CITATIONS
19	Untangling drivers of species distributions: Clobal sensitivity and uncertainty analyses of MaxEnt. Environmental Modelling and Software, 2014, 51, 296-309.	1.9	142
20	Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113561119.	3.3	136
21	Trends and applications of multi-criteria decision analysis in environmental sciences: literature review. Environment Systems and Decisions, 2017, 37, 123-133.	1.9	128
22	Coupling Multi-Criteria Decision Analysis, Life-Cycle Assessment, and Risk Assessment for Emerging Threats. Environmental Science & Technology, 2011, 45, 5068-5074.	4.6	123
23	Exploring vulnerability of coastal habitats to sea level rise through global sensitivity andÂuncertainty analyses. Environmental Modelling and Software, 2011, 26, 593-604.	1.9	121
24	Measurable Resilience for Actionable Policy. Environmental Science & Technology, 2013, 47, 130903081548008.	4.6	112
25	The Science and Practice of Resilience. Risk, Systems and Decisions, 2019, , .	0.5	110
26	Governance Strategies for a Sustainable Digital World. Sustainability, 2018, 10, 440.	1.6	106
27	Tiered Approach to Resilience Assessment. Risk Analysis, 2018, 38, 1772-1780.	1.5	105
28	Resilience in Intelligent Transportation Systems (ITS). Transportation Research Part C: Emerging Technologies, 2019, 100, 318-329.	3.9	105
29	Multi-criteria decision analysis framework for sustainable manufacturing in automotive industry. Journal of Cleaner Production, 2018, 187, 257-272.	4.6	103
30	Value of information analysis: the state of application. Environment Systems and Decisions, 2014, 34, 3-23.	1.9	101
31	Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States. Environmental Research Letters, 2016, 11, 114008.	2.2	101
32	A decision-directed approach for prioritizing research into the impact of nanomaterials on the environment and human health. Nature Nanotechnology, 2011, 6, 784-787.	15.6	100
33	Illustrating Anticipatory Life Cycle Assessment for Emerging Photovoltaic Technologies. Environmental Science & Technology, 2014, 48, 10531-10538.	4.6	100
34	Multi-criteria decision analysis to select metrics for design and monitoring of sustainable ecosystem restorations. Ecological Indicators, 2013, 26, 76-86.	2.6	98
35	A matrix approach to community resilience assessment: an illustrative case at Rockaway Peninsula. Environment Systems and Decisions, 2015, 35, 209-218.	1.9	98
36	Environmental risk analysis for nanomaterials: Review and evaluation of frameworks. Nanotoxicology, 2012, 6, 196-212.	1.6	96

#	Article	IF	CITATIONS
37	Predicted spatio-temporal dynamics of radiocesium deposited onto forests following the Fukushima nuclear accident. Scientific Reports, 2013, 3, 2564.	1.6	95
38	Multi-Criteria Decision Analysis. , 0, , .		92
39	Use of Life Cycle Assessments To Evaluate the Environmental Footprint of Contaminated Sediment Remediation. Environmental Science & Technology, 2011, 45, 4235-4241.	4.6	91
40	Systems engineering framework for cyber physical security and resilience. Environment Systems and Decisions, 2015, 35, 291-300.	1.9	90
41	A weight of evidence approach for hazard screening of engineered nanomaterials. Nanotoxicology, 2014, 8, 72-87.	1.6	84
42	Multicriteria Decision Framework for Cybersecurity Risk Assessment and Management. Risk Analysis, 2020, 40, 183-199.	1.5	82
43	Comparative, collaborative, and integrative risk governance for emerging technologies. Environment Systems and Decisions, 2018, 38, 170-176.	1.9	81
44	Integration of Decision Analysis and Scenario Planning for Coastal Engineering and Climate Change. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2011, 41, 63-73.	3.4	76
45	Scenario and multiple criteria decision analysis for energy and environmental security of military and industrial installations. Integrated Environmental Assessment and Management, 2011, 7, 228-236.	1.6	76
46	Application of Multicriteria Decision Analysis Tools to Two Contaminated Sediment Case Studies. Integrated Environmental Assessment and Management, 2007, 3, 223.	1.6	74
47	Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: summary of NATO Advanced Research Workshop. Journal of Nanoparticle Research, 2009, 11, 513-527.	0.8	74
48	Risk-Based Management of Contaminated Sediments:Â Consideration of Spatial and Temporal Patterns in Exposure Modeling. Environmental Science & Technology, 2002, 36, 238-246.	4.6	71
49	Model Uncertainty and Choices Made by Modelers: Lessons Learned from the International Atomic Energy Agency Model Intercomparisonsâ€. Risk Analysis, 2003, 23, 1297-1308.	1.5	71
50	Cognitive Mapping Tools: Review and Risk Management Needs. Risk Analysis, 2012, 32, 1333-1348.	1.5	69
51	Digital technologies can enhance climate resilience of critical infrastructure. Climate Risk Management, 2022, 35, 100387.	1.6	69
52	Benchmarking agency and organizational practices in resilience decision making. Environment Systems and Decisions, 2015, 35, 185-195.	1.9	68
53	Emergent conditions and multiple criteria analysis in infrastructure prioritization for developing countries. Journal of Multi-Criteria Decision Analysis, 2009, 16, 125-137.	1.0	67
54	Resilience management during large-scale epidemic outbreaks. Scientific Reports, 2018, 8, 1859.	1.6	67

#	Article	IF	CITATIONS
55	Prioritizing Infrastructure Investments in Afghanistan with Multiagency Stakeholders and Deep Uncertainty of Emergent Conditions. Journal of Infrastructure Systems, 2012, 18, 155-166.	1.0	66
56	Integrate life-cycle assessment and risk analysis results, not methods. Nature Nanotechnology, 2017, 12, 740-743.	15.6	66
57	The impact of seaâ€level rise on <scp>S</scp> nowy <scp>P</scp> lovers in <scp>F</scp> lorida: integrating geomorphological, habitat, and metapopulation models. Global Change Biology, 2011, 17, 3644-3654.	4.2	65
58	Risk-based standards: integrating top–down and bottom–up approaches. Environment Systems and Decisions, 2014, 34, 134-137.	1.9	64
59	Use of Multicriteria Decision Analysis to Support Weight of Evidence Evaluation. Risk Analysis, 2011, 31, 1211-1225.	1.5	63
60	Features of resilience. Environment Systems and Decisions, 2017, 37, 46-50.	1.9	61
61	Resilience science, policy and investment for civil infrastructure. Reliability Engineering and System Safety, 2018, 175, 19-23.	5.1	60
62	Sustainable nanotechnology: Defining, measuring and teaching. Nano Today, 2014, 9, 6-9.	6.2	59
63	A risk-informed decision framework for setting environmental windows for dredging projects. Science of the Total Environment, 2008, 403, 1-11.	3.9	58
64	Coupling Multicriteria Decision Analysis and Life Cycle Assessment for Nanomaterials. Journal of Industrial Ecology, 2008, 12, 282-285.	2.8	56
65	LICARA nanoSCAN - A tool for the self-assessment of benefits and risks of nanoproducts. Environment International, 2016, 91, 150-160.	4.8	53
66	Cybersecurity Standards: Managing Risk and Creating Resilience. Computer, 2014, 47, 70-76.	1.2	52
67	Lack of resilience in transportation networks: Economic implications. Transportation Research, Part D: Transport and Environment, 2020, 86, 102419.	3.2	52
68	Fundamental Concepts of Cyber Resilience: Introduction and Overview. , 2019, , 1-25.		51
69	Sustainable nanotechnology decision support system: bridging risk management, sustainable innovation and risk governance. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	50
70	Emerging Technologies for Environmental Remediation: Integrating Data and Judgment. Environmental Science & Technology, 2016, 50, 349-358.	4.6	50
71	Quantitative weight of evidence to assess confidence in potential modes of action. Regulatory Toxicology and Pharmacology, 2017, 86, 205-220.	1.3	50
72	From "weight of evidence―to quantitative data integration using multicriteria decision analysis and Bayesian methods. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 3-8.	0.9	50

#	Article	IF	CITATIONS
73	Use of Stochastic Multi-Criteria Decision Analysis to Support Sustainable Management of Contaminated Sediments. Environmental Science & Technology, 2012, 46, 1326-1334.	4.6	48
74	The Need to Reconcile Concepts that Characterize Systems Facing Threats. Risk Analysis, 2021, 41, 3-15.	1.5	48
75	Flood Risk Management: US Army Corps of Engineers and Layperson Perceptions. Risk Analysis, 2012, 32, 1349-1368.	1.5	47
76	Life cycle assessment for dredged sediment placement strategies. Science of the Total Environment, 2015, 511, 309-318.	3.9	47
77	Risk management is not enough: a conceptual model for resilience and adaptation-based vulnerability assessments. Environment Systems and Decisions, 2015, 35, 219-228.	1.9	46
78	Traceability and Risk Analysis Strategies for Addressing Counterfeit Electronics in Supply Chains for Complex Systems. Risk Analysis, 2016, 36, 1834-1843.	1.5	46
79	Resilience Analytics with Application to Power Grid of a Developing Region. Risk Analysis, 2017, 37, 1268-1286.	1.5	46
80	Resilience of Cyber Systems with Over―and Underregulation. Risk Analysis, 2017, 37, 1644-1651.	1.5	45
81	Risk and resilience in the time of the COVID-19 crisis. Environment Systems and Decisions, 2020, 40, 171-173.	1.9	45
82	Quantifying and mapping resilience within large organizations. Omega, 2019, 87, 117-126.	3.6	44
83	Emissions of metals and polychlorinated dibenzo(p)dioxins and furans (PCDD/Fs) from Portland cement manufacturing plants: Inter-kiln variability and dependence on fuel-types. Science of the Total Environment, 2011, 409, 4198-4205.	3.9	43
84	Sustainable roofing technology under multiple constraints: a decision-analytical approach. Environment Systems and Decisions, 2013, 33, 261-271.	1.9	43
85	From optimization to adaptation: Shifting paradigms in environmental management and their application to remedial decisions. Integrated Environmental Assessment and Management, 2006, 2, 92-98.	1.6	42
86	Application of Stochastic Multiattribute Analysis to Assessment of Single Walled Carbon Nanotube Synthesis Processes. Environmental Science & Technology, 2010, 44, 8704-8711.	4.6	42
87	Uncertainty in Octanolâ^'Water Partition Coefficient:Â Implications for Risk Assessment and Remedial Costs. Environmental Science & Technology, 2005, 39, 6917-6922.	4.6	41
88	Prioritization of sediment management alternatives using stochastic multicriteria acceptability analysis. Science of the Total Environment, 2010, 408, 4354-4367.	3.9	41
89	Polychlorinated dibenzo(p)dioxin and furan (PCDD/F) congener profiles in cement kiln emissions and impacts. Science of the Total Environment, 2012, 419, 37-43.	3.9	41
90	A weight of evidence assessment approach for adverse outcome pathways. Regulatory Toxicology and Pharmacology, 2016, 75, 46-57.	1.3	41

#	Article	IF	CITATIONS
91	Risk and resilience must be independently managed. Nature, 2018, 555, 30-30.	13.7	40
92	For nanotechnology decisions, use decision analysis. Nano Today, 2013, 8, 5-10.	6.2	39
93	Stability of a giant connected component in a complex network. Physical Review E, 2018, 97, 012309.	0.8	39
94	Resilience and projects: An interdisciplinary crossroad. Project Leadership and Society, 2020, 1, 100001.	1.8	38
95	Supply chain resilience for vaccines: review of modeling approaches in the context of the COVID-19 pandemic. Industrial Management and Data Systems, 2021, 121, 1723-1748.	2.2	38
96	Site‧pecific Applications of Probabilistic Health Risk Assessment: Review of the Literature Since 2000. Risk Analysis, 2007, 27, 635-658.	1.5	37
97	Trends and applications of multi-criteria decision analysis: use in government agencies. Environment Systems and Decisions, 2017, 37, 134-143.	1.9	37
98	A Decision Analytic Approach to Exposure-Based Chemical Prioritization. PLoS ONE, 2013, 8, e70911.	1.1	36
99	Review of decision analytic tools for sustainable nanotechnology. Environment Systems and Decisions, 2015, 35, 29-41.	1.9	36
100	Risk associated with engineered nanomaterials: Different tools for different ways to govern. Nano Today, 2018, 21, 9-13.	6.2	36
101	Radionuclide migration in forest ecosystems – results of a model validation study. Journal of Environmental Radioactivity, 2005, 84, 285-296.	0.9	35
102	Climate change scenarios: risk and impact analysis for Alaska coastal infrastructure. International Journal of Risk Assessment and Management, 2011, 15, 258.	0.2	35
103	Risk-Based and Prevention-Based Governance for Emerging Materials. Environmental Science & Technology, 2016, 50, 6822-6824.	4.6	35
104	Engineering meets institutions: an interdisciplinary approach to the management of resilience. Environment Systems and Decisions, 2018, 38, 306-317.	1.9	35
105	Selecting sustainable alternatives for cruise ships in Venice using multi-criteria decision analysis. Science of the Total Environment, 2018, 642, 668-678.	3.9	35
106	Scenario analysis: a review of methods and applications for engineering and environmental systems. Environment Systems and Decisions, 2013, 33, 3-20.	1.9	34
107	Communityâ€Driven Hypothesis Testing: A Solution for the Tragedy of the Anticommons. Risk Analysis, 2018, 38, 620-634.	1.5	34
108	A decision analytic model to guide earlyâ€stage government regulatory action: Applications for synthetic biology. Regulation and Governance, 2018, 12, 88-100.	1.9	33

#	Article	IF	CITATIONS
109	Uncertainty and variability in risk from trophic transfer of contaminants in dredged sediments. Science of the Total Environment, 2001, 274, 255-269.	3.9	32
110	Benefits and Risks of Emerging Technologies: Integrating Life Cycle Assessment and Decision Analysis To Assess Lumber Treatment Alternatives. Environmental Science & Technology, 2014, 48, 11543-11550.	4.6	32
111	Towards a Generic Resilience Management, Quantification and Development Process: General Definitions, Requirements, Methods, Techniques and Measures, and Case Studies. NATO Science for Peace and Security Series C: Environmental Security, 2017, , 21-80.	0.1	32
112	Simulating the fate of Florida Snowy Plovers with sea-level rise: Exploring research and management priorities with a global uncertainty and sensitivity analysis perspective. Ecological Modelling, 2012, 224, 33-47.	1.2	31
113	Epistemic uncertainty in predicting shorebird biogeography affected by sea-level rise. Ecological Modelling, 2012, 240, 1-15.	1.2	31
114	Defining, measuring, and enhancing resilience for small groups. Safety Science, 2019, 120, 603-616.	2.6	31
115	Risk Governance of Nanomaterials: Review of Criteria and Tools for Risk Communication, Evaluation, and Mitigation. Nanomaterials, 2019, 9, 696.	1.9	31
116	Defining resilience for the US building industry. Building Research and Information, 2019, 47, 480-492.	2.0	30
117	Use of multi-criteria decision analysis in regulatory alternatives analysis: A case study of lead free solder. Integrated Environmental Assessment and Management, 2013, 9, 652-664.	1.6	29
118	Research and Development Priorities for Energy Islanding of Military and Industrial Installations. Journal of Infrastructure Systems, 2013, 19, 297-305.	1.0	29
119	Risk and resilience lessons from Venice. Environment Systems and Decisions, 2014, 34, 378-382.	1.9	29
120	Governing the Use of Blockchain and Distributed Ledger Technologies: Not One-Size-Fits-All. IEEE Engineering Management Review, 2018, 46, 56-62.	1.0	29
121	The challenges of nanotechnology risk management. Nano Today, 2015, 10, 6-10.	6.2	28
122	A Definition and Categorization System for Advanced Materials: The Foundation for Riskâ€Informed Environmental Health and Safety Testing. Risk Analysis, 2019, 39, 1783-1795.	1.5	28
123	Risk Governance of Emerging Technologies Demonstrated in Terms of its Applicability to Nanomaterials. Small, 2020, 16, e2003303.	5.2	28
124	Do Tropical Cyclones Shape Shorebird Habitat Patterns? Biogeoclimatology of Snowy Plovers in Florida. PLoS ONE, 2011, 6, e15683.	1.1	27
125	Advancing Alternative Analysis: Integration of Decision Science. Environmental Health Perspectives, 2017, 125, 066001.	2.8	27
126	The Essential Elements of a Risk Governance Framework for Current and Future Nanotechnologies. Risk Analysis, 2018, 38, 1321-1331.	1.5	27

#	Article	IF	CITATIONS
127	Co-evolution of physical and social sciences in synthetic biology. Critical Reviews in Biotechnology, 2019, 39, 351-365.	5.1	27
128	The challenges of data usage for the United States' COVID-19 response. International Journal of Information Management, 2021, 59, 102352.	10.5	27
129	Scale- and resolution-invariance of suitable geographic range for shorebird metapopulations. Ecological Complexity, 2011, 8, 364-376.	1.4	26
130	Using Our Brains to Develop Better Policy. Risk Analysis, 2012, 32, 374-380.	1.5	26
131	Nanotoxicology and nanomedicine: making development decisions in an evolving governance environment. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	26
132	A sustainable Arctic: Making hard decisions. Arctic, Antarctic, and Alpine Research, 2018, 50, .	0.4	26
133	Cybertrust: From Explainable to Actionable and Interpretable Artificial Intelligence. Computer, 2020, 53, 91-96.	1.2	26
134	Enhanced Adaptive Management: Integrating Decision Analysis, Scenario Analysis and Environmental Modeling for the Everglades. Scientific Reports, 2013, 3, 2922.	1.6	25
135	Stakeholder engagement in dredged material management decisions. Science of the Total Environment, 2014, 496, 248-256.	3.9	25
136	Multi-criteria risk management with the use of DecernsMCDA: methods and case studies. Environment Systems and Decisions, 2016, 36, 266-276.	1.9	25
137	A critical juncture for synthetic biology. EMBO Reports, 2018, 19, .	2.0	25
138	Resilience for Smart Water Systems. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	1.3	25
139	To Improve Cyber Resilience, Measure It. Computer, 2021, 54, 80-85.	1.2	25
140	Building biosecurity for synthetic biology. Molecular Systems Biology, 2020, 16, e9723.	3.2	25
141	Systemic resilience in economics. Nature Physics, 2022, 18, 381-384.	6.5	25
142	Importance of Uncertainty and Variability to Predicted Risks from Trophic Transfer of PCBs in Dredged Sediments. Risk Analysis, 2002, 22, 499-512.	1.5	24
143	A resilience matrix approach for measuring and mitigating disaster-induced population displacement. International Journal of Disaster Risk Reduction, 2020, 42, 101310.	1.8	24
144	Use of multicriteria involvement processes to enhance transparency and stakeholder participation at Bergen Harbor, Norway. Integrated Environmental Assessment and Management, 2011, 7, 414-425.	1.6	23

#	Article	IF	CITATIONS
145	A game theoretic model for resource allocation among countermeasures with multiple attributes. European Journal of Operational Research, 2016, 252, 610-622.	3.5	23
146	The use of spatial modeling in an aquatic food web to estimate exposure and risk. Science of the Total Environment, 2002, 288, 97-110.	3.9	22
147	Flood Protection Diversification to Reduce Probabilities of Extreme Losses. Risk Analysis, 2012, 32, 1873-1887.	1.5	22
148	Advances on a Decision Analytic Approach to Exposureâ€Based Chemical Prioritization. Risk Analysis, 2020, 40, 83-96.	1.5	22
149	The case for value chain resilience. Management Research Review, 2020, 43, .	1.5	22
150	An Explainable Deep Learning Framework for Resilient Intrusion Detection in IoT-Enabled Transportation Networks. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 1000-1014.	4.7	22
151	Anticarcinogenic Responses in Rodent Cancer Bioassays Are Not Explained by Random Effects. Toxicological Sciences, 1998, 43, 1-9.	1.4	21
152	Environment models and decisions. Environment Systems and Decisions, 2014, 34, 369-372.	1.9	21
153	The Vaccine Supply Chain: A Call for Resilience Analytics to Support COVID-19 Vaccine Production and Distribution. Risk, Systems and Decisions, 2021, , 389-437.	0.5	21
154	Remedial Policies in Radiologically-Contaminated Forests: Environmental Consequences and Risk Assessment. Risk Analysis, 1997, 17, 67-75.	1.5	20
155	Panarchy use in environmental science for risk and resilience planning. Environment Systems and Decisions, 2016, 36, 225-228.	1.9	20
156	Balancing research and funding using value of information and portfolio tools for nanomaterial risk classification. Nature Nanotechnology, 2016, 11, 198-203.	15.6	20
157	Why Life Cycle Assessment Does Not Work for Synthetic Biology. Environmental Science & Technology, 2017, 51, 5861-5862.	4.6	20
158	System models for resilience in gerontology: application to the COVID-19 pandemic. BMC Geriatrics, 2021, 21, 51.	1.1	20
159	Enhancing Resilience in Post-COVID Societies: By Design or By Intervention?. Environmental Science & Technology, 2021, 55, 4202-4204.	4.6	20
160	Civilian Response Corps Force Review: The Application of Multi riteria Decision Analysis to Prioritize Skills Required for Future Diplomatic Missions. Journal of Multi-Criteria Decision Analysis, 2012, 19, 155-168.	1.0	19
161	Building resilience will require compromise on efficiency. Nature Energy, 2021, 6, 997-999.	19.8	19
162	A Semi-Quantitative Risk Assessment Standard for Counterfeit Electronics Detection. SAE International Journal of Aerospace, 2014, 7, 171-181.	4.0	18

#	Article	IF	CITATIONS
163	The Value of Information for Managing Contaminated Sediments. Environmental Science & Technology, 2014, 48, 9478-9485.	4.6	18
164	Cryptocurrency: governance for what was meant to be ungovernable. Environment Systems and Decisions, 2018, 38, 426-430.	1.9	18
165	Integrating Legal Liabilities in Nanomanufacturing Risk Management. Environmental Science & Technology, 2012, 46, 7955-7962.	4.6	17
166	Development of community of practice to support quantitative risk assessment for synthetic biology products: contaminant bioremediation and invasive carp control as cases. Environment Systems and Decisions, 2018, 38, 517-527.	1.9	17
167	Multiscale approach to the security of hardware supply chains for energy systems. Environment Systems and Decisions, 2013, 33, 326-334.	1.9	16
168	Avoiding Decline: Fostering Resilience and Sustainability in Midsize Cities. Sustainability, 2016, 8, 844.	1.6	16
169	Safety-by-design as a governance problem. Nano Today, 2020, 35, 100989.	6.2	16
170	How to Measure Cyber-Resilience of a System With Autonomous Agents: Approaches and Challenges. IEEE Engineering Management Review, 2021, 49, 89-97.	1.0	16
171	Multi-Criteria Decision Analysis. , 0, , .		16
172	A modular approach for assembly of quantitative adverse outcome pathways. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 353-362.	0.9	16
173	Model-directed sampling in Chernobyl forests: general methodology and 1994 sampling program. Science of the Total Environment, 1996, 180, 229-240.	3.9	15
174	Typological review of environmental performance metrics (with illustrative examples for oil spill) Tj ETQq0 0 0 rgB ⁻	T (Qverloc	k 10 Tf 50 3
175	Shorebird patches as fingerprints of fractal coastline fluctuations due to climate change. Ecological Processes, 2012, 1, .	1.6	15
176	A simplified approach for simulating changes in beach habitat due to the combined effects of long-term sea level rise, storm erosion, and nourishment. Environmental Modelling and Software, 2014, 52, 111-120.	1.9	15
177	Can Carbon Nanomaterials Improve CZTS Photovoltaic Devices? Evaluation of Performance and Impacts Using Integrated Life ycle Assessment and Decision Analysis. Risk Analysis, 2016, 36, 1916-1935.	1.5	15
178	Combine resilience and efficiency in post-COVID societies. Nature, 2020, 588, 220-220.	13.7	15
179	Weight of Evidence: What Is the State of the Science?. Risk Analysis, 2006, 26, 573-575.	1.5	14
180	Multiple-criteria decision-aiding framework to analyze and assess the governance of sustainability. Environment Systems and Decisions, 2013, 33, 305-321.	1.9	14

#	Article	IF	CITATIONS
181	Decision framework for evaluating the macroeconomic risks and policy impacts of cyber attacks. Environment Systems and Decisions, 2013, 33, 544-560.	1.9	14
182	Network Foundation for Command and Control (C2) Systems: Literature Review. IEEE Access, 2018, 6, 68782-68794.	2.6	14
183	Security Metrics in Industrial Control Systems. Advances in Information Security, 2016, , 167-185.	0.9	14
184	Resilience: Directions for an Uncertain Future Following the COVIDâ€19 Pandemic. GeoHealth, 2021, 5, e2021GH000447.	1.9	14
185	Predicting physical properties of emerging compounds with limited physical and chemical data: QSAR model uncertainty and applicability to military munitions. Chemosphere, 2009, 77, 1412-1418.	4.2	13
186	Four domains of cybersecurity: a risk-based systems approach to cyber decisions. Environment Systems and Decisions, 2013, 33, 469-470.	1.9	13
187	Decision analysis for species preservation under sea-level rise. Ecological Modelling, 2013, 263, 264-272.	1.2	13
188	A decision-analytic approach to predict state regulation of hydraulic fracturing. Environmental Sciences Europe, 2014, 26, 20.	2.6	13
189	Resilience-by-Design and Resilience-by-Intervention in supply chains for remote and indigenous communities. Nature Communications, 2022, 13, 1124.	5.8	13
190	Spatially explicit exposure models: application to military sites. Toxicology and Industrial Health, 2001, 17, 230-235.	0.6	12
191	A Moment of Mental Model Clarity: Response to Jones et al. 2011. Ecology and Society, 2012, 17, .	1.0	12
192	Susceptibility assessment of urban tree species in Cambridge, MA, from future climatic extremes. Environment Systems and Decisions, 2015, 35, 389-400.	1.9	11
193	Concepts and approaches to resilience in a variety of governance and regulatory domains. Environment Systems and Decisions, 2015, 35, 183-184.	1.9	11
194	A portfolio decision analysis approach to support energy research and development resource allocation. Energy Policy, 2017, 105, 128-135.	4.2	11
195	An Introduction to Resilience for Critical Infrastructures. NATO Science for Peace and Security Series C: Environmental Security, 2017, , 3-17.	0.1	11
196	Cyber Resilience: by Design or by Intervention?. Computer, 2021, 54, 112-117.	1.2	11
197	Sustainable Urban Systems: A Review of How Sustainability Indicators Inform Decisions. NATO Science for Peace and Security Series C: Environmental Security, 2014, , 3-20.	0.1	11
198	Strategies for Selecting Routes through Real-World Environments: Relative Topography, Initial Route Straightness, and Cardinal Direction. PLoS ONE, 2015, 10, e0124404.	1.1	11

#	Article	IF	CITATIONS
199	Weight and Survival Depression in Rodent Bioassays with and without Tumor Decreases. Toxicological Sciences, 1998, 43, 10-18.	1.4	10
200	Climate change risk management: a Mental Modeling application. Environment Systems and Decisions, 2013, 33, 376-390.	1.9	10
201	An Enhanced Adaptive Management Approach for Remediation of Legacy Mercury in the South River. PLoS ONE, 2015, 10, e0117140.	1.1	10
202	Leveraging stakeholder knowledge in the innovation decision making process. International Journal of Business Continuity and Risk Management, 2016, 6, 163.	0.2	10
203	Can You Be Smart and Resilient at the Same Time?. Environmental Science & Technology, 2017, 51, 5867-5868.	4.6	10
204	Multiâ€criteria decision analysis applied to harmful algal bloom management: A case study. Integrated Environmental Assessment and Management, 2017, 13, 631-639.	1.6	10
205	Comparing mental models of prospective users of the sustainable nanotechnology decision support system. Environment Systems and Decisions, 2017, 37, 465.	1.9	10
206	Decision support for selection of food waste technologies at military installations. Journal of Cleaner Production, 2017, 141, 267-277.	4.6	10
207	Development of an evidence-based decision pathway for vestibular schwannoma treatment options. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2017, 38, 57-64.	0.6	10
208	Sex Robots—A Harbinger for Emerging Al Risk. Frontiers in Artificial Intelligence, 2019, 2, 27.	2.0	10
209	An Analytical Perspective on Pandemic Recovery. Health Security, 2020, 18, 250-256.	0.9	10
210	Biosecurity Demands Resilience. Environmental Science & amp; Technology, 2020, 54, 4706-4708.	4.6	10
211	A Decision Analytic Approach for Department of Defense Acquisition Risk Management. , 2012, 17, 57-70.		10
212	Role of Comparative Risk Assessment in Addressing Environmental Security in the Middle East. Risk Analysis, 2004, 24, 1243-1248.	1.5	9
213	Sources of uncertainty in model predictions: lessons learned from the IAEA Forest and Fruit Working Group model intercomparisons. Journal of Environmental Radioactivity, 2005, 84, 297-314.	0.9	9
214	Environmental risk management with the use of multi-criteria spatial decision support system DECERNS. International Journal of Risk Assessment and Management, 2012, 16, 175.	0.2	9
215	Lifeâ€cycle impacts of soybean and algae biodiesel: Case study of <scp>US</scp> marine vessels. Biofuels, Bioproducts and Biorefining, 2015, 9, 567-580.	1.9	9
216	How decision analysis can further nanoinformatics. Beilstein Journal of Nanotechnology, 2015, 6, 1594-1600.	1.5	9

#	Article	IF	CITATIONS
217	Diplomacy for science: strategies to promote international collaboration. Environment Systems and Decisions, 2016, 36, 331-334.	1.9	9
218	Enhancing resilience within and between critical infrastructure systems. Environment Systems and Decisions, 2018, 38, 275-277.	1.9	9
219	Resilience at OECD: Current State and Future Directions. IEEE Engineering Management Review, 2018, 46, 128-135.	1.0	9
220	A quantitative risk assessment method for synthetic biology products in the environment. Science of the Total Environment, 2019, 696, 133940.	3.9	9
221	A Multi-Criteria Decision Analysis Approach for Prioritization of Performance Metrics. NATO Science for Peace and Security Series C: Environmental Security, 2007, , 261-298.	0.1	9
222	Inferring Species Richness and Turnover by Statistical Multiresolution Texture Analysis of Satellite Imagery. PLoS ONE, 2012, 7, e46616.	1.1	9
223	Prioritization of capability gaps for joint small arms program using multi-criteria decision analysis. Journal of Multi-Criteria Decision Analysis, 2009, 16, 179-185.	1.0	8
224	Environmental risk management for radiological accidents: Integrating risk assessment and decision analysis for remediation at different spatial scales. Integrated Environmental Assessment and Management, 2011, 7, 393-395.	1.6	8
225	Decisions, Science, and Values: Crafting Regulatory Alternatives Analysis. Risk Analysis, 2015, 35, 2137-2151.	1.5	8
226	Engaging stakeholders in nano-EHS risk governance. Environment Systems and Decisions, 2015, 35, 24-28.	1.9	8
227	Nanotechnology: promoting innovation through analysis and governance. Environment Systems and Decisions, 2015, 35, 22-23.	1.9	8
228	Rulemaking for Insider Threat Mitigation. , 2019, , 265-286.		8
229	A performance-based tabular approach for joint systematic improvement of risk control and resilience applied to telecommunication grid, gas network, and ultrasound localization system. Environment Systems and Decisions, 2021, 41, 286.	1.9	8
230	Prioritization of Resilience Initiatives for Climateâ€Related Disasters in the Metropolitan City of Venice. Risk Analysis, 2022, 42, 931-952.	1.5	8
231	Autonomous Cyberdefense Introduces Risk: Can We Manage the Risk?. Computer, 2021, 54, 106-110.	1.2	8
232	Anticarcinogenic responses in rodent cancer bioassays are not explained by random effects. Toxicological Sciences, 1998, 43, 1-9.	1.4	8
233	Resilience and efficiency for the nanotechnology supply chains underpinning COVID-19 vaccine development. Current Opinion in Chemical Engineering, 2021, 34, 100759.	3.8	8
234	From optimization to adaptation: shifting paradigms in environmental management and their application to remedial decisions. Integrated Environmental Assessment and Management, 2006, 2, 92-8.	1.6	8

#	Article	IF	CITATIONS
235	Risk Informed Decision Framework for Integrated Evaluation of Countermeasures against CBRN Threats. Journal of Homeland Security and Emergency Management, 2012, 9, .	0.2	7
236	Scientific Convergence: Dealing with the Elephant in the Room. Environmental Science & Technology, 2014, 48, 10539-10540.	4.6	7
237	Not a Humbug: the evolution of patient-centred medical decision-making. Evidence-Based Medicine, 2015, 20, 193-197.	0.6	7
238	Mental Modeling Approach. , 2017, , .		7
239	Managing evidence in food safety and nutrition. EFSA Journal, 2019, 17, e170704.	0.9	7
240	Applying Resilience to Hybrid Threats. IEEE Security and Privacy, 2019, 17, 78-83.	1.5	7
241	A framework and pilot tool for the risk-based prioritization and grouping of nano-enabled consumer products. Environmental Science: Nano, 2019, 6, 356-365.	2.2	7
242	Resilience learning through self adaptation in digital twins of human-cyber-physical systems. , 2021, , .		7
243	Vaccine supply chain: Resilience-by-design and resilience-by-intervention. Vaccine, 2022, 40, 1695-1698.	1.7	7
244	Exploring the Convergence of Resilience Processes and Sustainable Outcomes in Post-COVID, Post-Glasgow Economies. Sustainability, 2021, 13, 13415.	1.6	7
245	Absolute Risk or Relative Risk? A Study of Intraspecies and Interspecies Extrapolation of Chemical-Induced Cancer Risk. Risk Analysis, 2002, 22, 141-157.	1.5	6
246	Radionuclides in fruit systems: Model–model intercomparison study. Science of the Total Environment, 2006, 364, 124-137.	3.9	6
247	Cognitive barriers in floods risk perception and management: A mental modeling framework and illustrative example. , 2009, , .		6
248	Nanotechnology Risk Management. , 2010, , 143-179.		6
249	Relating Mandates in the United States for Managing the Ocean to Ecosystem Goods and Services Demonstrates Broad but Varied Coverage. Frontiers in Marine Science, 2016, 3, .	1.2	6
250	Value of information analysis for life cycle assessment: Uncertain emissions in the green manufacturing of electronic tablets. Journal of Cleaner Production, 2018, 197, 1540-1545.	4.6	6
251	Cyber Resilience in IoT Network: Methodology and Example of Assessment through Epidemic Spreading Approach. , 2019, , .		6
252	Resilient Financial Systems Can Soften the Next Global Financial Crisis. Challenge, 2020, 63, 311-318.	0.4	6

#	Article	IF	CITATIONS
253	Evaluating Resilience Co-benefits of Engineering With Nature® Projects. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	6
254	Comparing the Emergence of Technical and Social Sciences Research in Artificial Intelligence. Frontiers in Computer Science, 2021, 3, .	1.7	6
255	Bridging international approaches on nanoEHS. Nature Nanotechnology, 2021, 16, 608-611.	15.6	6
256	Decision Evaluation for Complex Risk Network Systems (DECERNS) Software Tool. , 2009, , 1-18.		6
257	Relationship among state reopening policies, health outcomes and economic recovery through first wave of the COVID-19 pandemic in the U.S PLoS ONE, 2021, 16, e0260015.	1.1	6
258	A Unified Model of Resilience and Aging: Applications to COVID-19. Frontiers in Public Health, 2022, 10, .	1.3	6
259	The Effect of Different Tumor Groupings on Findings of Anticarcinogenic Responses in Long-Term Rodent Bioassays. Regulatory Toxicology and Pharmacology, 2002, 36, 139-148.	1.3	5
260	Environmental sustainability, complex systems, and the disruptive imagination. Environment Systems and Decisions, 2013, 33, 181-183.	1.9	5
261	Resilience, sustainability, and complexity in social, environmental, and technical systems. Environment Systems and Decisions, 2018, 38, 1-2.	1.9	5
262	Value of information analysis for assessing risks and benefits of nanotechnology innovation. Environmental Sciences Europe, 2019, 31, .	2.6	5
263	Concurrent threats and disasters: modeling and managing risk and resilience. Environment Systems and Decisions, 2020, 40, 299-300.	1.9	5
264	Can Comorbidity Data Explain Cross-State and Cross-National Difference in COVID-19 Death Rates?. Risk Management and Healthcare Policy, 2021, Volume 14, 2877-2885.	1.2	5
265	Recovery-based design of buildings for seismic resilience. International Journal of Disaster Risk Reduction, 2021, 65, 102556.	1.8	5
266	Science and Practice of Resilience: Disaster Systems Applications to Aging Resilience. Risk, Systems and Decisions, 2020, , 53-80.	0.5	5
267	THE QND MODEL/GAME SYSTEM: INTEGRATING QUESTIONS AND DECISIONS FOR MULTIPLE STRESSORS. , 2006, , 203-225.		5
268	Assessment of the COVID-19 infection risk at a workplace through stochastic microexposure modeling. Journal of Exposure Science and Environmental Epidemiology, 2022, 32, 712-719.	1.8	5
269	Correlations among tumor types in mouse cancer bioassays: liver adenomas, liver carcinomas, leukemias and lymphomas. Toxicology and Industrial Health, 2000, 16, 16-40.	0.6	4
270	Uncertainty in Multi-Pathway Risk Assessment for Combustion Facilities. Human and Ecological Risk Assessment (HERA), 2012, 18, 501-516.	1.7	4

#	Article	IF	CITATIONS
271	Risk Assessment, Life Cycle Assessment, and Decision Methods for Nanomaterials. , 2015, , 383-419.		4
272	Use and Misuse of MCDA to Support Decision Making Informed by Risk. Risk Analysis, 2020, 41, 1513-1521.	1.5	4
273	Complexity, Interconnectedness and Resilience: Why a Paradigm Shift in Economics is Needed to Deal with Covid 19 and Future Shocks. Risk, Systems and Decisions, 2021, , 61-73.	0.5	4
274	Decision Making in a Convergent Society. , 2016, , 113-124.		4
275	Resilience and Fault Tolerance in Electrical Engineering. NATO Science for Peace and Security Series C: Environmental Security, 2017, , 427-447.	0.1	4
276	Diversity and inclusiveness are necessary components of resilient international teams. Humanities and Social Sciences Communications, 2022, 9, .	1.3	4
277	Disjunctures of Practice and the Problems of Collapse. Risk, Systems and Decisions, 2022, , 75-108.	0.5	4
278	Liver adenomas and carcinomas: correlations and relationship to body weight in long-term rodent cancer bioassays. Toxicology and Industrial Health, 2000, 16, 211-223.	0.6	3
279	A preliminary exposure assessment of microcystins from consumption of drinking water in the United States. Lake and Reservoir Management, 2007, 23, 203-210.	0.4	3
280	Energy security of military and industrial systems: Multicriteria analysis of vulnerability to emergent conditions including cyber threats. , 2011, , .		3
281	Anthrax Cleanup Decisions: Statistical Confidence or Confident Response. Environmental Science & Technology, 2011, 45, 9471-9472.	4.6	3
282	Environmental radiation: Risk benchmarks or benchmarking risk assessment. Integrated Environmental Assessment and Management, 2011, 7, 400-403.	1.6	3
283	Assessing cumulative effects of multiple activities in New England watersheds. Environment Systems and Decisions, 2015, 35, 511-520.	1.9	3
284	Environmental policy recommendations for the new US President. Integrated Environmental Assessment and Management, 2017, 13, 7-7.	1.6	3
285	Selection of invasive wild pig countermeasures using multicriteria decision analysis. Science of the Total Environment, 2017, 574, 1164-1173.	3.9	3
286	Assessing the Sustainability of Advanced Materials Using Multicriteria Decision Analysis and the Triple Bottom Line. Integrated Environmental Assessment and Management, 2019, 15, 1021-1028.	1.6	3
287	Sustainable Environmental Remediation Using NZVI by Managing Benefit-Risk Trade-Offs. , 2019, , 511-562.		3
288	Panarchy: Thinking in Systems and Networks. Risk, Systems and Decisions, 2019, , 35-44.	0.5	3

#	Article	IF	CITATIONS
289	Resilience and Governance. Risk, Systems and Decisions, 2019, , 59-79.	0.5	3
290	Indicators and Metrics of Emerging Country-Level STEM Innovation. IEEE Engineering Management Review, 2020, 48, 47-53.	1.0	3
291	Value-Based Optimization of Healthcare Resource Allocation for COVID-19 Hot Spots. Risk, Systems and Decisions, 2021, , 103-114.	0.5	3
292	Advanced analytics for environmental resilience and a sustainable future. Environment Systems and Decisions, 2021, 41, 1-2.	1.9	3
293	A HABITAT SUITABILITY EVALUATION TECHNIQUE AND ITS APPLICATION TO ENVIRONMENTAL RISK ASSESSMENT. , 2006, , 191-201.		3
294	Supply Chains. , 2019, , 447-462.		3
295	Mainstreaming Resilience Analytics: 10 Years After Fukushima Disaster. Integrated Environmental Assessment and Management, 2022, , .	1.6	3
296	Management Tools for Managing Vapor Intrusion. Environmental Science & Technology, 2011, 45, 8611-8612.	4.6	2
297	Risky Removal: Developing a Holistic Understanding of the Risks of Redeveloping Sites Contaminated with Unexploded Ordnance. Environmental Science & Technology, 2013, 47, 3955-3956.	4.6	2
298	Introduction to the inaugural issue of environment systems and decisions. Environment Systems and Decisions, 2013, 33, 1-2.	1.9	2
299	Nanotechnology Risk Management. , 2014, , 247-263.		2
300	Resilience Quantification and Assessment. Risk, Systems and Decisions, 2019, , 81-101.	0.5	2
301	Workshop Report: Governance of Emerging Nanotechnology Risks in the Semiconductor Industry. Frontiers in Public Health, 2020, 8, 275.	1.3	2
302	Identifying New Partnerships for Innovation: Governance and Policy Challenges. IEEE Engineering Management Review, 2020, 48, 26-38.	1.0	2
303	Emergent technologies, divergent frames: differences in regulator vs. developer views on innovation. European Journal of Futures Research, 2021, 9, .	1.5	2
304	The importance of compounding threats to hurricane evacuation modeling. Npj Urban Sustainability, 2022, 2, .	3.7	2
305	International airports as agents of resilience. Journal of Contingencies and Crisis Management, 2022, 30, 217-221.	1.6	2
306	Use of life cycle assessments for improved decision making in contaminated sediment remediation. Integrated Environmental Assessment and Management, 2011, 7, 304-305.	1.6	1

#	Article	IF	CITATIONS
307	Radioactive Contamination of Natural Ecosystems: Seeing the Wood Despite the Trees. Environmental Science & Technology, 2012, 46, 12283-12284.	4.6	1
308	Collective risk management: insights and opportunities for DoD decision-makers. Environment Systems and Decisions, 2013, 33, 335-340.	1.9	1
309	Introduction to the inaugural general issue of environment systems and decisions. Environment Systems and Decisions, 2014, 34, 367-368.	1.9	1
310	Application of systems modeling and risk assessment to address real-world decision-making challenges. Environment Systems and Decisions, 2015, 35, 425-426.	1.9	1
311	Preventing risk and promoting resilience in radiation health. Integrated Environmental Assessment and Management, 2016, 12, 677-679.	1.6	1
312	Data analysis and modeling to support policy decisions in environmental, transportation, and energy systems. Environment Systems and Decisions, 2016, 36, 329-330.	1.9	1
313	Introduction to the first general issue of 2016. Environment Systems and Decisions, 2016, 36, 1-2.	1.9	1
314	Inspiration to operation: Securing net benefits vs. zero outcome. Journal of Cleaner Production, 2017, 148, 422-426.	4.6	1
315	Science of Mental Modeling. , 2017, , 31-40.		1
316	Risk Assessment and Decision Analysis Within Surgical Applications. , 2017, , 7-17.		1
317	Clobal perspectives and case studies of environmental management and policy. Environment Systems and Decisions, 2017, 37, 379.	1.9	1
318	Campaign to governance: science, engineering, and policy innovation for America's top infrastructure projects. Environment Systems and Decisions, 2017, 37, 42-45.	1.9	1
319	Undue concentration of research and education: multi-criteria decision approach to assess jurisdiction eligibility for NSF funding. Environment Systems and Decisions, 2017, 37, 367-378.	1.9	1
320	Advances in life cycle analysis, econometrics, optimization, R&D policy, and health decision making. Environment Systems and Decisions, 2017, 37, 241-242.	1.9	1
321	Decision making for independent municipal action. Integrated Environmental Assessment and Management, 2018, 14, 194-197.	1.6	1
322	Nanotechnology Risk Management. , 2018, , 195-224.		1
323	An introduction to Environment Systems and Decisions' Special Issue on Emerging Technologies. Environment Systems and Decisions, 2018, 38, 161-162.	1.9	1
324	Modeling and analytics to address national and global scale challenges. Environment Systems and Decisions, 2019, 39, 1-2.	1.9	1

#	Article	IF	CITATIONS
325	Editorial featured papers on environmental decisions. EURO Journal on Decision Processes, 2019, 7, 151-157.	1.8	1
326	Signals and Metrics Identifying Partnerships for Innovation. IEEE Engineering Management Review, 2020, 48, 39-46.	1.0	1
327	Modeling and Analytics to Support Emerging International Innovation Partnerships. IEEE Engineering Management Review, 2020, 48, 54-64.	1.0	1
328	Interdisciplinary mathematical methods for societal decision-making and resilience. Environment Systems and Decisions, 2020, 40, 1-2.	1.9	1
329	Biosecurity for Synthetic Biology and Emerging Biotechnologies: Critical Challenges for Governance. NATO Science for Peace and Security Series C: Environmental Security, 2021, , 1-12.	0.1	1
330	Harmful Cyanobacterial Blooms. NATO Science for Peace and Security Series C: Environmental Security, 2007, , 207-242.	0.1	1
331	A Solution-Focused Comparative Risk Assessment of Conventional and Emerging Synthetic Biology Technologies for Fuel Ethanol. Risk, Systems and Decisions, 2020, , 223-255.	0.5	1
332	Flood Risk Management. , 2017, , 43-56.		1
333	Synthetic Biology: Research Needs for Assessing Environmental Impacts. Risk, Systems and Decisions, 2020, , 19-50.	0.5	1
334	Synthetic Biology: Perspectives on Risk Analysis, Governance, Communication, and ELSI. Risk, Systems and Decisions, 2020, , 1-18.	0.5	1
335	Nanotechnology: Health and Environmental Risks (Shatkin, J.A.) [Book review]. IEEE Nanotechnology Magazine, 2009, 3, 29-29, 32.	0.9	0
336	The challenges posed by radiation and radionuclide releases to the environment. Integrated Environmental Assessment and Management, 2011, 7, 360-361.	1.6	0
337	Energy security innovation at industrial and military installations: A multicriteria analysis with regulatory, environmental, economic, and other emergent conditions. , 2011, , .		0
338	Tools and strategies for climate change decision making. Environment Systems and Decisions, 2014, 34, 471-472.	1.9	0
339	Decision Making in a Convergent Society. , 2015, , 1-9.		0
340	Latest journal news and introduction to the September issue of environment systems and decisions. Environment Systems and Decisions, 2016, 36, 223-224.	1.9	0
341	Preview of the June issue featuring literature reviews of MCDA and articles authored by students. Environment Systems and Decisions, 2017, 37, 121-122.	1.9	0
342	Systems modeling techniques for data analysis, decision making, and risk governance. Environment Systems and Decisions, 2018, 38, 431-432.	1.9	0

#	ARTICLE	IF	CITATIONS
343	Advances in machine learning and decision making. Environment Systems and Decisions, 2019, 39, 247-248.	1.9	Ο
344	Innovation of risk analytics for technology and society. Environment Systems and Decisions, 2019, 39, 369-370.	1.9	0
345	Analytics and decision-making to inform public policy in response to diverse threats. Environment Systems and Decisions, 2020, 40, 463-464.	1.9	0
346	Why Did Risk Communication Fail for the COVID-19 Pandemic, and How Can We Do Better?. Risk, Systems and Decisions, 2021, , 195-211.	0.5	0
347	Synthetic Biology Brings New Challenges to Managing Biosecurity and Biosafety. NATO Science for Peace and Security Series C: Environmental Security, 2021, , 117-129.	0.1	0
348	Algorithms and models for decision making in advanced technology systems. Environment Systems and Decisions, 2021, 41, 179-180.	1.9	0
349	Integrating data from physical and social science to address emerging societal challenges. Environment Systems and Decisions, 2021, 41, 331-333.	1.9	0
350	Decision making to address complexity in systems and organizations. Environment Systems and Decisions, 2021, 41, 485-486.	1.9	0
351	Liver adenomas and carcinomas: correlations and relationship to body weight in long-term rodent cancer bioassays. Toxicology and Industrial Health, 2000, 16, 211-223.	0.6	0
352	Decision Evaluation for Complex Risk Networked Systems Development Progress. NATO Science for Peace and Security Series C: Environmental Security, 2007, , 369-391.	0.1	0
353	The State of Practice. Risk, Systems and Decisions, 2019, , 105-124.	0.5	0
354	Metrics-Based Approaches. Risk, Systems and Decisions, 2019, , 125-165.	0.5	0
355	Lessons from History. Risk, Systems and Decisions, 2019, , 45-55.	0.5	0
356	A systems approach for resources management during the COVID-19 pandemic: Multi-agency perspectives from New England. Journal of Emergency Management, 2020, 18, 209-223.	0.2	0