Bin Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2788671/publications.pdf

Version: 2024-02-01

75	2,980	33	52
papers	citations	h-index	g-index
77	77	77	3611 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Rationally designed synthetic protein hydrogels with predictable mechanical properties. Nature Communications, 2018, 9, 620.	5.8	145
2	Rigid helical-like assemblies from a self-aggregating tripeptide. Nature Materials, 2019, 18, 503-509.	13.3	133
3	Hierarchical construction of a mechanically stable peptide–graphene oxide hybrid hydrogel for drug delivery and pulsatile triggered release in vivo. Nanoscale, 2015, 7, 1655-1660.	2.8	131
4	Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers. Nature Communications, 2020, 11, 4032.	5. 8	129
5	Hydrogel tapes for fault-tolerant strong wet adhesion. Nature Communications, 2021, 12, 7156.	5 . 8	122
6	Molecular engineering of metal coordination interactions for strong, tough, and fast-recovery hydrogels. Science Advances, 2020, 6, eaaz9531.	4.7	111
7	Polymerâ€Supramolecular Polymer Doubleâ€Network Hydrogel. Advanced Functional Materials, 2016, 26, 9044-9052.	7.8	106
8	Electrically Controllable Actuators Based on Supramolecular Peptide Hydrogels. Advanced Functional Materials, 2016, 26, 9053-9062.	7.8	102
9	Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Research, 2018, 11, 5556-5565.	5 . 8	91
10	Self-Assembly of Aromatic Amino Acid Enantiomers into Supramolecular Materials of High Rigidity. ACS Nano, 2020, 14, 1694-1706.	7.3	86
11	Living materials fabricated via gradient mineralization of light-inducible biofilms. Nature Chemical Biology, 2021, 17, 351-359.	3.9	85
12	Bioinspired Stable and Photoluminescent Assemblies for Power Generation. Advanced Materials, 2019, 31, e1807481.	11.1	82
13	Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry. Biomacromolecules, 2016, 17, 2812-2819.	2.6	75
14	Stable and optoelectronic dipeptide assemblies for power harvesting. Materials Today, 2019, 30, 10-16.	8.3	62
15	Tunable Mechanical and Optoelectronic Properties of Organic Cocrystals by Unexpected Stacking Transformation from H- to J- and X-Aggregation. ACS Nano, 2020, 14, 10704-10715.	7.3	61
16	Diphenylalanine-Derivative Peptide Assemblies with Increased Aromaticity Exhibit Metal-like Rigidity and High Piezoelectricity. ACS Nano, 2020, 14, 7025-7037.	7.3	59
17	100th Anniversary of Macromolecular Science Viewpoint: Synthetic Protein Hydrogels. ACS Macro Letters, 2020, 9, 512-524.	2.3	58
18	Printable Fluorescent Hydrogels Based on Self-Assembling Peptides. Scientific Reports, 2017, 7, 9691.	1.6	49

#	Article	IF	CITATIONS
19	Sprayâ€Painted Hydrogel Coating for Marine Antifouling. Advanced Materials Technologies, 2021, 6, 2000911.	3.0	49
20	Guest Molecule-Mediated Energy Harvesting in a Conformationally Sensitive Peptide–Metal Organic Framework. Journal of the American Chemical Society, 2022, 144, 3468-3476.	6.6	49
21	Rigid Tightly Packed Amino Acid Crystals as Functional Supramolecular Materials. ACS Nano, 2019, 13, 14477-14485.	7.3	48
22	Injectable, anti-inflammatory and conductive hydrogels based on graphene oxide and diacerein-terminated four-armed polyethylene glycol for spinal cord injury repair. Materials and Design, 2020, 196, 109092.	3.3	48
23	Principles Governing Catalytic Activity of Self-Assembled Short Peptides. Journal of the American Chemical Society, 2019, 141, 223-231.	6.6	47
24	Structure and sequence features of mussel adhesive protein lead to its salt-tolerant adhesion ability. Science Advances, 2020, 6, .	4.7	47
25	A Highly Stretchable, Tough, Fast Self-Healing Hydrogel Based on Peptide–Metal Ion Coordination. Biomimetics, 2019, 4, 36.	1.5	44
26	Biofabrication of a biomimetic supramolecular-polymer double network hydrogel for cartilage regeneration. Materials and Design, 2020, 189, 108492.	3.3	44
27	SPEG Controls Calcium Reuptake Into the Sarcoplasmic Reticulum Through Regulating SERCA2a by Its Second Kinase-Domain. Circulation Research, 2019, 124, 712-726.	2.0	43
28	Electroresponsive Supramolecular Graphene Oxide Hydrogels for Active Bacteria Adsorption and Removal. ACS Applied Materials & Electroresponding (Natural Science) and Removal. ACS Applied Materials & Electroresponding (Natural Science) and Removal. ACS Applied Materials & Electroresponding (Natural Science) and Removal. ACS Applied Materials & Electroresponding (Natural Science) and Removal. ACS Applied Materials & Electroresponding (Natural Science) and Removal. ACS Applied Materials & Electroresponding (Natural Science) and Removal. ACS Applied Materials & Electroresponding (Natural Science) and Removal. ACS Applied Materials & Electroresponding (Natural Science) and Removal. ACS Applied Materials & Electroresponding (Natural Science) and Removal. ACS Applied Materials & Electroresponding (Natural Science) and Removal. ACS Applied Materials & Electroresponding (Natural Science) and Removal. ACS Applied Materials & Electroresponding (Natural Science) and Removal. ACS Applied Materials & Electroresponding (Natural Science) and Removal. ACS Applied (Natural Science) and A	4.0	42
29	Geranylgeranyl diphosphate synthase (GGPPS) regulates nonâ€alcoholic fatty liver disease (NAFLD)–fibrosis progression by determining hepatic glucose/fatty acid preference under highâ€fat diet conditions. Journal of Pathology, 2018, 246, 277-288.	2.1	40
30	Self-Assembled Nanofibers for Strong Underwater Adhesion: The Trick of Barnacles. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25017-25025.	4.0	40
31	Stretchable and self-healable hydrogel artificial skin. National Science Review, 2022, 9, .	4.6	40
32	<scp>GGPPS</scp> â€mediated <scp>Rab27A</scp> geranylgeranylation regulates β cell dysfunction during type 2 diabetes development by affecting insulin granule docked pool formation. Journal of Pathology, 2016, 238, 109-119.	2.1	39
33	Accelerated charge transfer in water-layered peptide assemblies. Energy and Environmental Science, 2020, 13, 96-101.	15.6	39
34	Trabecular-like Ti–6Al–4V scaffold for bone repair: A diversified mechanical stimulation environment for bone regeneration. Composites Part B: Engineering, 2022, 241, 110057.	5.9	38
35	EGR1 regulates hepatic clock gene amplitude by activating Per1 transcription. Scientific Reports, 2015, 5, 15212.	1.6	37
36	GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genetics, 2017, 13, e1006535.	1.5	35

#	Article	IF	CITATIONS
37	Coupling of COPII vesicle trafficking to nutrient availability by the IRE1α-XBP1s axis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11776-11785.	3.3	35
38	Hydrogels With Tunable Mechanical Properties Based on Photocleavable Proteins. Frontiers in Chemistry, 2020, 8, 7.	1.8	34
39	Multiporous Supramolecular Microspheres for Artificial Photosynthesis. Chemistry of Materials, 2017, 29, 4454-4460.	3.2	32
40	Lipid-induced Muscle Insulin Resistance Is Mediated by GGPPS via Modulation of the RhoA/Rho Kinase Signaling Pathway. Journal of Biological Chemistry, 2015, 290, 20086-20097.	1.6	30
41	Engineering hydrogels with homogeneous mechanical properties for controlling stem cell lineage specification. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
42	Bioinspired Ice Growth Inhibitors Based on Self-Assembling Peptides. ACS Macro Letters, 2019, 8, 1383-1390.	2.3	27
43	PP2Acl $^{\pm}$ positively regulates the termination of liver regeneration in mice through the AKT/GSK3l 2 /Cyclin D1 pathway. Journal of Hepatology, 2016, 64, 352-360.	1.8	25
44	Modulation of physical properties of organic cocrystals by amino acid chirality. Materials Today, 2021, 42, 29-40.	8.3	25
45	Mechanically rigid supramolecular assemblies formed from an Fmoc-guanine conjugated peptide nucleic acid. Nature Communications, 2019, 10, 5256.	5.8	24
46	<i>GGPPS</i> deficiency aggravates CCl ₄ â€induced liver injury by inducing hepatocyte apoptosis. FEBS Letters, 2015, 589, 1119-1126.	1.3	23
47	Coâ€Assembly Induced Solidâ€State Stacking Transformation in Amino Acidâ€Based Crystals with Enhanced Physical Properties. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
48	Peptide Coassembly to Enhance Piezoelectricity for Energy Harvesting. ACS Applied Materials & Amp; Interfaces, 2022, 14, 6538-6546.	4.0	22
49	Regulating Mechanical Properties of <scp>Polymerâ€Supramolecular Doubleâ€Network</scp> Hydrogel by Supramolecular Selfâ€assembling Structures. Chinese Journal of Chemistry, 2021, 39, 2711-2717.	2.6	21
50	An integrated artificial photosynthesis system based on peptide nanotubes. Nanoscale, 2014, 6, 7832-7837.	2.8	20
51	Strong and Reversible Covalent Double Network Hydrogel Based on Forceâ€Coupled Enzymatic Reactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
52	Bioinspired Supramolecular Packing Enables High Thermoâ€Sustainability. Angewandte Chemie - International Edition, 2020, 59, 19037-19041.	7.2	18
53	Tuning of the dynamics of metal ion crosslinked hydrogels by network structures. Soft Matter, 2019, 15, 4423-4427.	1.2	14
54	Hepatic expression of Yin Yang 1 (YY1) is associated with the non-alcoholic fatty liver disease (NAFLD) progression in patients undergoing bariatric surgery. BMC Gastroenterology, 2018, 18, 147.	0.8	11

#	Article	IF	Citations
55	Heatâ€Shock protein A12A is a novel PCNAâ€binding protein and promotes hepatocellular carcinoma growth. FEBS Journal, 2020, 287, 5464-5477.	2.2	10
56	Morphology evolution of poly(lactic acid) during in situ reaction with poly(butylenesuccinate) and ethyleneâ€methyl acrylateâ€glycidyl methacrylate: The formation of a novel 3D starâ€like structure. Journal of Applied Polymer Science, 2020, 137, 49201.	1.3	8
57	Egr1 deficiency disrupts dynamic equilibrium of chondrocyte extracellular matrix through PPARγ/RUNX2 signaling pathways. American Journal of Translational Research (discontinued), 2018, 10, 1620-1632.	0.0	8
58	Bioinspired Suprahelical Frameworks as Scaffolds for Artificial Photosynthesis. ACS Applied Materials & Scaffolds for Artificial Photosynthesis.	4.0	7
59	Regulating the Homogeneity of Thiol-Maleimide Michael-Type Addition-Based Hydrogels Using Amino Biomolecules. Gels, 2021, 7, 206.	2.1	7
60	Smart Adhesive Peptide Nanofibers for Cell Capture and Release. ACS Biomaterials Science and Engineering, 2020, 6, 6800-6807.	2.6	6
61	Strong and Injectable Hydrogels Based on Multivalent Metal Ion-Peptide Cross-linking. Chemical Research in Chinese Universities, 2020, 36, 962-969.	1.3	6
62	A thermally reversible healing EPDM based elastomer with higher tensile properties and damping properties. Journal of Applied Polymer Science, 2021, 138, 49767.	1.3	6
63	Modulating vectored non-covalent interactions for layered assembly with engineerable properties. Bio-Design and Manufacturing, 2022, 5, 529-539.	3.9	6
64	Tuning Strain Stiffening of Protein Hydrogels by Charge Modification. International Journal of Molecular Sciences, 2022, 23, 3032.	1.8	5
65	Constitutive theory for direct coupling of molecular frictions and the viscoelasticity of soft materials. Journal of Applied Mechanics, Transactions ASME, 0, , 1-19.	1.1	4
66	Short Peptides Derived from a Block Copolymer-like Barnacle Cement Protein Self-Assembled into Diverse Supramolecular Structures. Biomacromolecules, 2022, 23, 2019-2030.	2.6	4
67	Gradual Stress-Relaxation of Hydrogel Regulates Cell Spreading. International Journal of Molecular Sciences, 2022, 23, 5170.	1.8	4
68	Coâ€Assembly Induced Solidâ€State Stacking Transformation in Amino Acidâ€Based Crystals with Enhanced Physical Properties. Angewandte Chemie, 2022, 134, .	1.6	3
69	Bioinspired Supramolecular Packing Enables High Thermoâ€Sustainability. Angewandte Chemie, 2020, 132, 19199-19203.	1.6	2
70	Selfâ€Assembled Quadruplexâ€Inspired Peptide Nucleic Acid Tetramer for Artificial Photosynthesis. ChemPhotoChem, 2020, 4, 5154-5158.	1.5	2
71	miR‑124 targets retinoid�X receptor�α to reduce growth of TSC2‑deficient lymphangioleiomyomatosis. Oncology Reports, 2018, 41, 1342-1350.	1.2	1
72	Strong and Reversible Covalent Double Network Hydrogel Based on Forceâ€Coupled Enzymatic Reactions. Angewandte Chemie, 2022, 134, .	1.6	1

#	Article	IF	CITATIONS
73	The orientational preferences of backbones of proteins. Science Bulletin, 2006, 51, 2559-2565.	1.7	O
74	Rationally Designed Synthetic Protein Hydrogels with Predictable and Controllable Mechanical Properties. MCB Molecular and Cellular Biomechanics, 2019, 16, 147-147.	0.3	0
75	Unexpected Stacking Transformation from H- to J- and X-Aggregated Co-Crystals Leading to Tunable Mechanical and Optoelectronic Properties. SSRN Electronic Journal, 0, , .	0.4	O