Emanuele Loro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2788576/publications.pdf

Version: 2024-02-01

46 papers

3,585 citations

304743

22

h-index

276875 41 g-index

47 all docs

47 docs citations

47 times ranked

8191 citing authors

#	Article	IF	CITATIONS
1	Autophagy Is Required to Maintain Muscle Mass. Cell Metabolism, 2009, 10, 507-515.	16.2	1,554
2	Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle. Cell Metabolism, 2016, 24, 269-282.	16.2	273
3	The nuclear receptor Rev-erbî± controls circadian thermogenic plasticity. Nature, 2013, 503, 410-413.	27.8	228
4	Cyclins and Cell Cycle Control in Cancer and Disease. Genes and Cancer, 2012, 3, 649-657.	1.9	180
5	ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice. Journal of Clinical Investigation, 2012, 122, 833-843.	8.2	106
6	Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients. Journal of Translational Medicine, 2010, 8, 48.	4.4	97
7	A novel deletion in the GTPase domain of OPA1 causes defects in mitochondrial morphology and distribution, but not in function. Human Molecular Genetics, 2008, 17, 3291-3302.	2.9	91
8	Dissociation of muscle insulin sensitivity from exercise endurance in mice by HDAC3 depletion. Nature Medicine, 2017, 23, 223-234.	30.7	90
9	Inhibition of mitochondrial fission favours mutant over wild-type mitochondrial DNA. Human Molecular Genetics, 2009, 18, 3407-3416.	2.9	84
10	Normal myogenesis and increased apoptosis in myotonic dystrophy type-1 muscle cells. Cell Death and Differentiation, 2010, 17, 1315-1324.	11.2	74
11	Examining the role of cyclin D1 in breast cancer. Future Oncology, 2011, 7, 753-765.	2.4	67
12	Non-immunogenic utrophin gene therapy for the treatment of muscular dystrophy animal models. Nature Medicine, 2019, 25, 1505-1511.	30.7	59
13	Cyclin D1 induction of Dicer governs microRNA processing and expression in breast cancer. Nature Communications, 2013, 4, 2812.	12.8	57
14	The CTG repeat expansion size correlates with the splicing defects observed in muscles from myotonic dystrophy type 1 patients. Journal of Medical Genetics, 2008, 45, 639-646.	3.2	51
15	Cyclin D1 Restrains Oncogene-Induced Autophagy by Regulating the AMPK–LKB1 Signaling Axis. Cancer Research, 2017, 77, 3391-3405.	0.9	45
16	Kinase-independent role of cyclin D1 in chromosomal instability and mammary tumorigenesis. Oncotarget, 2015, 6, 8525-8538.	1.8	43
17	IL15RA is required for osteoblast function and bone mineralization. Bone, 2017, 103, 20-30.	2.9	37
18	The HDAC3 enzymatic activity regulates skeletal muscle fuel metabolism. Journal of Molecular Cell Biology, 2019, 11, 133-143.	3.3	37

#	Article	IF	Citations
19	Altered Ca2+ Homeostasis and Endoplasmic Reticulum Stress in Myotonic Dystrophy Type 1 Muscle Cells. Genes, 2013, 4, 275-292.	2.4	33
20	IL- $15R\hat{l}\pm$ is a determinant of muscle fuel utilization, and its loss protects against obesity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R835-R844.	1.8	31
21	Functional effects of muscle PGC-1alpha in aged animals. Skeletal Muscle, 2020, 10, 14.	4.2	29
22	AKT controls protein synthesis and oxidative metabolism via combined mTORC1 and FOXO1 signalling to govern muscle physiology. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 495-514.	7.3	29
23	MBNL142 and MBNL143 gene isoforms, overexpressed in DM1-patient muscle, encode for nuclear proteins interacting with Src family kinases. Cell Death and Disease, 2013, 4, e770-e770.	6.3	26
24	Pharmacotherapy to protect the neuromuscular junction after acute organophosphorus pesticide poisoning. Annals of the New York Academy of Sciences, 2016, 1374, 86-93.	3.8	22
25	New Insights into the Lactate Shuttle: Role of MCT4 in the Modulation of the Exercise Capacity. IScience, 2019, 22, 507-518.	4.1	22
26	High-throughput identification of post-transcriptional utrophin up-regulators for Duchenne muscle dystrophy (DMD) therapy. Scientific Reports, 2020, 10, 2132.	3.3	22
27	Persistent NF-κB activation in muscle stem cells induces proliferation-independent telomere shortening. Cell Reports, 2021, 35, 109098.	6.4	22
28	Functional improvement of dystrophic muscle by repression of utrophin: let-7c interaction. PLoS ONE, 2017, 12, e0182676.	2.5	22
29	Aberrant splicing and expression of the non muscle myosin heavy-chain gene MYH14 in DM1 muscle tissues. Neurobiology of Disease, 2012, 45, 264-271.	4.4	20
30	Tibetan <i>PHD2</i> , an allele with loss-of-function properties. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12230-12238.	7.1	20
31	Exercise protocol induces muscle, tendon, and bone adaptations in the rat shoulder. Muscles, Ligaments and Tendons Journal, 2014, 4, 413-9.	0.3	19
32	Genome Editing-Mediated Utrophin Upregulation in Duchenne Muscular Dystrophy Stem Cells. Molecular Therapy - Nucleic Acids, 2020, 22, 500-509.	5.1	16
33	Exercise protocol induces muscle, tendon, and bone adaptations in the rat shoulder. Muscles, Ligaments and Tendons Journal, 0, , .	0.3	15
34	Cultured muscle cells display defects of mitochondrial myopathy ameliorated by anti-oxidants. Brain, 2007, 130, 2715-2724.	7.6	13
35	Mitochondrial ultrastructural adaptations in fast muscles of mice lacking IL15Ra Journal of Cell Science, 2018, 131, .	2.0	9
36	Editorial: The Role of the Muscle Secretome in Health and Disease. Frontiers in Physiology, 2020, 11, 1101.	2.8	9

#	Article	IF	CITATIONS
37	Elongated Mitochondria Constrictions and fission in muscle fatigue. Journal of Cell Science, 2018, 131,	2.0	8
38	PMO-based let-7c site blocking oligonucleotide (SBO) mediated utrophin upregulation in mdx mice, a therapeutic approach for Duchenne muscular dystrophy (DMD). Scientific Reports, 2020, 10, 21492.	3.3	8
39	Development and characterization of polyspecific antiâ€mitochondrion antibodies for proteomics studies on <i>in toto</i> tissue homogenates. Electrophoresis, 2009, 30, 1329-1341.	2.4	5
40	In vitrodevelopment of engineered muscle using a scaffold based on the pressure-activated microsyringe (PAM) technique. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 138-152.	2.7	5
41	Effect of Interleukin-15 Receptor Alpha Ablation on the Metabolic Responses to Moderate Exercise Simulated by in vivo Isometric Muscle Contractions. Frontiers in Physiology, 2019, 10, 1439.	2.8	5
42	S9.7 Dominant optic atrophy caused by a novel OPA1 mutation: Disruption of the mitochondrial network with preserved bioenergetics. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S56.	1.0	0
43	Molecular investigation of riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (RR-MAD) patients. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 54.	1.0	0
44	Inhibition of Breast Tumor Stem Cells Expansion by the Endogenous Cell Fate Determination Factor Dachshund., 2012,, 385-395.		0
45	In Vivo Evaluation of the Mechanical and Viscoelastic Properties of the Rat Tongue. Journal of Visualized Experiments, 2017, , .	0.3	0
46	Abstract B10: Cyclin D1 restrains oncogene-induced autophagy via phosphorylation of LKB1., 2016,,.		0