
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2788288/publications.pdf Version: 2024-02-01

HYUN-IONC PAIR

#	Article	IF	CITATIONS
1	Glassesâ€ s haped triblock copolymer prepared by combination of atom transfer radical polymerization and ring opening polymerization. Journal of Polymer Science, 2022, 60, 258.	2.0	0
2	A facile post-modification strategy for carboxylic acid-functionalized UV-responsive pressure-sensitive adhesives. Polymer Chemistry, 2022, 13, 193-200.	1.9	2
3	Highly tunable metal-free ring opening polymerization of glycidol into various controlled topologies catalyzed by frustrated lewis pairs. Polymer Chemistry, 2022, 13, 1243-1252.	1.9	11
4	A recyclable metal-free catalytic system for the cationic ring-opening polymerization of glycidol under ambient conditions. Green Chemistry, 2022, 24, 251-258.	4.6	10
5	Organic Dispersion of Mo ₃ Se ₃ [–] Single-Chain Atomic Crystals Using Surface Modification Methods. ACS Nano, 2022, 16, 8022-8029.	7.3	4
6	Screen-printed carbon electrode modified with de-bundled single-walled carbon nanotubes for voltammetric determination of norepinephrine in ex vivo rat tissue. Bioelectrochemistry, 2022, 146, 108155.	2.4	13
7	Metal acetylacetonate as a radical initiator and catalyst for polyurethane in dual-curing reaction at low temperature. Progress in Organic Coatings, 2021, 151, 105926.	1.9	3
8	LCST and UCST Transition of Poly(DMAEMAâ€ <i>b</i> â€MEO ₂ MA) Copolymer in KHP Buffer. Macromolecular Chemistry and Physics, 2021, 222, 2000330.	1.1	5
9	Molecular Weight Distribution of Two Types of Living Chains Formed during Nitroxideâ€Mediated Polymerization of Styrene. Macromolecular Rapid Communications, 2021, 42, 2000624.	2.0	1
10	Phenolphthalein Anilide Based Poly(Ether Sulfone) Block Copolymers Containing Quaternary Ammonium and Imidazolium Cations: Anion Exchange Membrane Materials for Microbial Fuel Cell. Membranes, 2021, 11, 454.	1.4	4
11	Molecular‣evel Contact of Graphene/Silver Nanowires through Simultaneous Dispersion for a Highly Stable Wearable Electrothermal Heater. Advanced Materials Technologies, 2021, 6, 2100177.	3.0	9
12	Effect of the Functional Group Position in Functionalized Liquid Butadiene Rubbers Used as Processing Aids on the Properties of Silica-Filled Rubber Compounds. Polymers, 2021, 13, 2698.	2.0	7
13	Branch-Controlled ATRP Via Sulfoxide Chemistry. Macromolecules, 2021, 54, 7716-7723.	2.2	12
14	Polymer-dispersed reduced graphene oxide nanosheets and Prussian blue modified biosensor for amperometric detection of sarcosine. Analytica Chimica Acta, 2021, 1175, 338749.	2.6	25
15	Segmented Polyurethanes and Thermoplastic Elastomers from Elemental Sulfur with Enhanced Thermomechanical Properties and Flame Retardancy. Angewandte Chemie, 2021, 133, 23082.	1.6	6
16	Segmented Polyurethanes and Thermoplastic Elastomers from Elemental Sulfur with Enhanced Thermomechanical Properties and Flame Retardancy. Angewandte Chemie - International Edition, 2021, 60, 22900-22907.	7.2	44
17	Scratch-healable automotive clearcoats based on disulfide polyacrylate urethane networks. Progress in Organic Coatings, 2021, 161, 106472.	1.9	5
18	Controlling Graphene Wrinkles through the Phase Transition of a Polymer with a Low Critical Solution Temperature. Macromolecular Rapid Communications, 2021, 42, e2100489.	2.0	2

#	Article	IF	CITATIONS
19	Disposable Voltammetric Sensor Modified with Block Copolymer-Dispersed Graphene for Simultaneous Determination of Dopamine and Ascorbic Acid in Ex Vivo Mouse Brain Tissue. Biosensors, 2021, 11, 368.	2.3	9
20	<i>In situ</i> formation of core–shell nanoparticles in epoxy resin <i>via</i> reversible addition–fragmentation chain transfer dispersion polymerization. Materials Advances, 2021, 2, 7846-7850.	2.6	3
21	Robust Nanozyme-Enzyme Nanosheets-Based Lactate Biosensor for Diagnosing Bacterial Infection in Olive Flounder (Paralichthys olivaceus). Biosensors, 2021, 11, 439.	2.3	5
22	Synthesis of an amphiphilic <i>spiro</i> â€multiblock copolymer via thiolâ€ene click chemistry. Journal of Polymer Science, 2020, 58, 132-138.	2.0	4
23	Direct introduction of hydroxyl groups in polystyrene chain ends prepared by atom-transfer radical polymerization. Polymer Journal, 2020, 52, 57-64.	1.3	6
24	Partially crosslinked comb-shaped PPO-based anion exchange membrane grafted with long alkyl chains: Synthesis, characterization and microbial fuel cell performance. International Journal of Hydrogen Energy, 2020, 45, 27346-27358.	3.8	32
25	Polymer wrapping-induced dispersion of single walled carbon nanotubes in ethylene glycol under mild sonication. RSC Advances, 2020, 10, 26262-26267.	1.7	8
26	Dynamic Covalent Polymerization of Chalcogenide Hybrid Inorganic/Organic Polymer Resins with Norbornenyl Comonomers. Macromolecular Research, 2020, 28, 1003-1009.	1.0	6
27	Redoxâ€Initiated Reversible Additionâ€Fragmentation Chain Transfer (RAFT) Miniemulsion Polymerization of Styrene using PPEGMAâ€Based Macroâ€RAFT Agent. Macromolecular Rapid Communications, 2020, 41, e2000399.	2.0	8
28	Microfluidic Tracking of the Growth of Polymeric Vesicles in Hydrodynamic Flow. ACS Applied Polymer Materials, 2020, 2, 5845-5850.	2.0	1
29	Flame Retardant Submicron Particles via Surfactant-Free RAFT Emulsion Polymerization of Styrene Derivatives Containing Phosphorous. Polymers, 2020, 12, 1244.	2.0	4
30	Enhanced Shear Thickening of Silica Colloidal Suspension Using Polystyrene-Polyacrylamide Particles. Macromolecular Research, 2020, 28, 523-529.	1.0	1
31	Nitrilotriacetic acid-end-functionalized polycaprolactone as a template for polymer–protein nanocarriers. Polymer Chemistry, 2020, 11, 1580-1588.	1.9	7
32	RAFT/PISA based Ni-NTA polymeric particles for virus-mimetic influenza vaccines. Journal of Industrial and Engineering Chemistry, 2020, 86, 35-38.	2.9	6
33	Preparation of Thin-Layer Graphene Using RAFT Polymerization and a Thiol-Ene Click Reaction. Macromolecular Research, 2019, 27, 955-962.	1.0	4
34	Influenza mimetic protein–polymer nanoparticles as antigen delivery vehicles to dendritic cells for cancer immunotherapy. Nanoscale, 2019, 11, 13878-13884.	2.8	10
35	Evaluation of the protective effects of a nanogel-based vaccine against rabbit hepatitis E virus. Vaccine, 2019, 37, 5972-5978.	1.7	5
36	Molecular-Weight Distribution of Living Chains in Polystyrene Prepared by Reversible Addition–Fragmentation Chain-Transfer Polymerization. Macromolecules, 2019, 52, 7448-7455.	2.2	16

#	Article	IF	CITATIONS
37	Magnetically steerable Fe3O4@Ni2+-NTA-polystyrene nanoparticles for the immobilization and separation of his6-protein. European Polymer Journal, 2019, 112, 524-529.	2.6	21
38	Enhanced shear thickening of polystyrene-poly(acrylamide) and polystyrene-poly(HEMA) particles. Colloid and Polymer Science, 2019, 297, 95-105.	1.0	7
39	Size-tunable protein–polymer hybrid carrier for cell internalization. Reactive and Functional Polymers, 2018, 124, 72-76.	2.0	8
40	De-bundled single-walled carbon nanotube-modified sensors for simultaneous differential pulse voltammetric determination of ascorbic acid, dopamine, and uric acid. New Journal of Chemistry, 2018, 42, 2432-2438.	1.4	26
41	A Metalâ€Free, Nonâ€Enzymatic Electrochemical Glucose Sensor with a deâ€Bundled Singleâ€Walled Carbon Nanotubeâ€Modified Electrode. Bulletin of the Korean Chemical Society, 2018, 39, 141-145.	1.0	8
42	Synthesis and characterization of poly(ether sulfone) block copolymers containing pendent quaternary ammonium- and imidazolium groups as anion exchange membranes. Solid State Ionics, 2018, 314, 46-56.	1.3	24
43	Orientation Controlled Protein Nanocapsules by Enzymatic Removal of a Polymer Template. Biomacromolecules, 2018, 19, 4219-4227.	2.6	4
44	High-performance shear thickening of polystyrene particles with poly(HEMA). Colloid and Polymer Science, 2018, 296, 1591-1598.	1.0	5
45	Topologically Reversible Transformation of Tricyclic Polymer into Polyring Using Disulfide/Thiol Redox Chemistry. Macromolecules, 2018, 51, 5313-5322.	2.2	14
46	Virus-mimetic polymer nanoparticles displaying hemagglutinin as an adjuvant-free influenza vaccine. Biomaterials, 2018, 183, 234-242.	5.7	20
47	Influence of the silanes on the crosslink density and crosslink structure of silica-filled solution styrene butadiene rubber compounds. Composite Interfaces, 2017, 24, 711-727.	1.3	60
48	Effects of Poly(<i>N</i> -vinylcaprolactam) Molecular Weight and Molecular Weight Distribution on Methane Hydrate Formation. Energy & Fuels, 2017, 31, 6358-6363.	2.5	31
49	Fabrication of durable and flexible single-walled carbon nanotube transparent conductive films. RSC Advances, 2017, 7, 19267-19272.	1.7	19
50	Quaternized poly (poly(ethylene glycol)methyl ether methacrylate)- b -poly (2-(dimethylamino)ethyl) Tj ETQq0 0 0 phthalocyanine. Reactive and Functional Polymers, 2017, 120, 147-152.) rgBT /Ov 2.0	erlock 10 Tf 10
51	Covalent fixed multicyclic polystyrene conformers. Journal of Polymer Science Part A, 2017, 55, 4020-4026.	2.5	5
52	Self-assembly behavior of inconvertible star poly(acrylic acid) conformers based on p-tert-butylthiacalix[4]arene. Macromolecular Research, 2017, 25, 615-623.	1.0	3
53	Molecular Weight Distribution of Living Chains in Polystyrene Prepared by Atom Transfer Radical Polymerization. ACS Macro Letters, 2017, 6, 758-761.	2.3	24
54	The effect of accelerator contents on the vulcanizate structures of SSBR/silica vulcanizates. Composite Interfaces, 2017, 24, 563-577.	1.3	27

#	Article	IF	CITATIONS
55	Morphology Control of Ni(II)-NTA-End-Functionalized Block Copolymer and Bio-Conjugation through Metal-Ligand Complex. Polymers, 2017, 9, 144.	2.0	2
56	Continuous Preparation of Hollow Polymeric Nanocapsules Using Self-Assembly and a Photo-Crosslinking Process of an Amphiphilic Block Copolymer. Molecules, 2017, 22, 1892.	1.7	2
57	Figure-Eight-Shaped and Cage-Shaped Cyclic Polystyrenes. Macromolecules, 2016, 49, 3672-3680.	2.2	34
58	Inconvertible p-tert-butylthiacalix[4]arene-core-star polystyrene conformers. RSC Advances, 2016, 6, 74614-74619.	1.7	2
59	Redox-responsive biodegradable nanogels for photodynamic therapy using Chlorin e6. Journal of Materials Science, 2016, 51, 8442-8451.	1.7	12
60	One-pot synthesis of bicyclic polystyrene by combination of ATRP and click chemistry. Macromolecular Research, 2016, 24, 856-861.	1.0	5
61	Colored single-chain polymeric nanoparticles via intramolecular copper phthalocyanine formation. Polymer Chemistry, 2015, 6, 3392-3397.	1.9	42
62	Improved synthesis of bicyclic polystyrenes by ATRP and "click―reaction. Polymer, 2015, 72, 447-452.	1.8	11
63	The effect of thermal treatment on polymer-dispersed single-walled carbon nanotube transparent conductive film. Composites Science and Technology, 2015, 121, 95-103.	3.8	4
64	Fabrication of flexible, transparent and conductive films from single-walled carbon nanotubes with high aspect ratio using poly((furfuryl methacrylate)-co-(2-(dimethylamino)ethyl methacrylate)) as a new polymeric dispersant. Nanoscale, 2015, 7, 6745-6753.	2.8	25
65	Facile tuning of a polymeric dispersant for single-walled carbon nanotube dispersion. RSC Advances, 2015, 5, 69410-69417.	1.7	10
66	Reduced filler flocculation in the silica-filled styrene–butadiene–glycidyl methacrylate terpolymer. Composite Interfaces, 2015, 22, 137-149.	1.3	21
67	Styrene-butadiene-glycidyl methacrylate terpolymer/silica composites: dispersion of silica particles and dynamic mechanical properties. Composite Interfaces, 2014, 21, 685-702.	1.3	44
68	1,2,3â€ŧriazole crosslinked polymers as binders for solid rocket propellants. Journal of Applied Polymer Science, 2014, 131, .	1.3	22
69	Dispersion of non-covalently functionalized single-walled carbon nanotubes with high aspect ratios using poly(2-dimethylaminoethyl methacrylate-co-styrene). Carbon, 2014, 72, 57-65.	5.4	21
70	Radiofrequency treatment enhances the catalytic function of an immobilized nanobiohybrid catalyst. Nanoscale, 2014, 6, 6009-6017.	2.8	6
71	Preparation and Analysis of Bicyclic Polystyrene. Macromolecules, 2014, 47, 3791-3796.	2.2	35
72	Poly(styreneâ€ <i>r</i> â€butadiene)â€ <i>b</i> â€poly(poly(ethylene glycol) methyl ether methacrylate) as a silica dispersant in rubber compounds. Polymer International, 2014, 63, 908-914	1.6	19

#	Article	IF	CITATIONS
73	4-Arm Star Shaped and Linear Block Copolymers for Copper Phthalocyanine Dispersion. Porrime, 2014, 38, 671-675.	0.0	3

Site $\hat{a} \in s$ pecific reversible immobilization and purification of His $\hat{a} \in s$ agged protein on poly($2\hat{a} \in a$ cetamidoacrylic) Tj ETOq0 0 0 rgBT /Overlow of His $\hat{a} \in s$ and the second seco

75	Star Synthesis Using Macroinitiators <i>via</i> Electrochemically Mediated Atom Transfer Radical Polymerization. Macromolecules, 2013, 46, 5856-5860.	2.2	65
76	Multivalent (Nitrilotriacetic Acid)â€Endâ€Functionalized Polystyrenes by ATRP and Their Selfâ€Assembly. Macromolecular Chemistry and Physics, 2013, 214, 2027-2035.	1.1	2
77	Ultrasonic Breaking of Fibers and Microparticles into Mesoporous Particles with High Loading of Magnetic Nanoparticles. Macromolecular Materials and Engineering, 2013, 298, 575-582.	1.7	4

78 In situ formation of polymer–protein hybrid spherical aggregates from (nitrilotriacetic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 542 Td (a

79	One-step immobilization and purification of his-tagged enzyme using poly(2-acetamidoacrylic acid) hydrogel. Macromolecular Research, 2013, 21, 5-9.	1.0	12
80	MALDI-TOF MS characterization of polystyrene synthesized by ATRP. Polymer, 2013, 54, 6133-6139.	1.8	26
81	Characterization of AN-SBR/Silica compound with acrylonitrile as a polar group in SBR. Macromolecular Research, 2013, 21, 738-746.	1.0	13
82	(Nitrilotriacetic Acid)-End-Functionalized Polystyrenes Synthesized by ATRP. ACS Symposium Series, 2012, , 303-314.	0.5	0
83	Soft Immobilization of Proteins onto Singleâ€Walled Carbon Nanotubes through Nickel Complexed Nitrilotriacetic Acidâ€End Functionalized Polystyrenes. Israel Journal of Chemistry, 2012, 52, 359-363.	1.0	5
84	Encapsulation of Nanoparticles Using Nitrilotriacetic Acid Endâ€Functionalized Polystyrenes and Their Application for the Separation of Proteins. Advanced Functional Materials, 2012, 22, 4032-4037.	7.8	17
85	Synthesis of poly(ethylene glycol)-b-poly(mercapto ethylacrylamide) diblock copolymer via atom transfer radical polymerization. Polymer Bulletin, 2012, 68, 681-691.	1.7	5
86	Synthesis of Well-Defined Block Copolymer Dispersants with (2-Dimethylamino)ethyl Methacrylate and Oligo(ethylene oxide)methyl Ether Methacrylate via ATRP for Dispersing Copper Phthalocyanine Pigment. Porrime, 2012, 36, 104-110.	0.0	3
87	Synthesis of Well-Defined (Nitrilotriacetic Acid)-End-Functionalized Polystyrenes and Their Bioconjugation with Histidine-Tagged Green Fluorescent Proteins. Macromolecules, 2011, 44, 4672-4680.	2.2	30
88	Development of fibrinogen microspheres as a biodegradable carrier for tissue engineering. Biochip Journal, 2011, 5, 175-183.	2.5	17
89	Amphiphilic gradient copolymer of [poly(ethylene glycol) methyl ether] methacrylate and styrene via atom transfer radical polymerization. Macromolecular Research, 2011, 19, 1257-1263.	1.0	18
90	Microfluidic channels fabricated on mesoporous electrospun fiber mats: A facile route to microfluidic chips. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 89-95.	2.4	18

#	Article	IF	CITATIONS
91	Effect of polyethylene glycol on the properties of styreneâ€butadiene rubber/organoclay nanocomposites filled with silica and carbon black. Journal of Applied Polymer Science, 2011, 122, 1766-1777.	1.3	16
92	Application and toxicity of CNTs in human body. Toxicology and Environmental Health Sciences, 2010, 2, 94-98.	1.1	0
93	Synthesis of ferromagnetic polymer coated nanoparticles on multi-gram scale with tunable particle size. Journal of Materials Chemistry, 2010, 20, 6023.	6.7	25
94	Preparation and Characterization of Inorganic–Organic Composites with Highly Dense CdS Nanoparticles Using Poly(2-acetamidoacrylic acid) Hydrogels. Composite Interfaces, 2009, 16, 493-505.	1.3	3
95	Synthesis of linear tetrablock quaterpolymers via atom transfer radical polymerization and a click coupling approach. Reactive and Functional Polymers, 2009, 69, 681-687.	2.0	15
96	Purification of His-tagged proteins using Ni2+–poly(2-acetamidoacrylic acid) hydrogel. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 876, 8-12.	1.2	18
97	Covalent attachment of polystyrene on multi-walled carbon nanotubes via nitroxide mediated polymerization. Composite Interfaces, 2007, 14, 493-504.	1.3	11
98	Synthesis and characterization of low molecular weight poly(methyl acrylate)-b-polystyrene by a combination of ATRP and click coupling method. Macromolecular Research, 2007, 15, 541-546.	1.0	24
99	Photodetachment of aryl moieties from covalently functionalized single-walled carbon nanotubes by UV laser irradiation. Journal of Materials Chemistry, 2006, 16, 2374.	6.7	57
100	New tridentate ligands with mixed donor atoms for Cu-based atom transfer radical polymerization. Macromolecular Research, 2006, 14, 539-544.	1.0	9
101	Carbon Nanotubes as a Ligand in Cp2ZrCl2-Based Ethylene Polymerization. Macromolecular Rapid Communications, 2006, 27, 47-50.	2.0	45
102	Formation of Thermoresponsive Gold Nanoparticle/PNIPAAm Hybrids by Surface-Initiated, Atom Transfer Radical Polymerization in Aqueous Media. Macromolecular Chemistry and Physics, 2005, 206, 1941-1946.	1.1	153
103	Graft Polymerization of Styrene from Single-Walled Carbon Nanotube using Atom Transfer Radical Polymerization. Polymer Bulletin, 2005, 55, 173-179.	1.7	25
104	Formation of carbon nanotube/glucose-carrying polymer hybrids by surface-initiated, atom transfer radical polymerization. Macromolecular Research, 2005, 13, 356-361.	1.0	20
105	Tuning of Magnetic Ordering by Y Substitution in Ca3Co2O6. Journal of the Physical Society of Japan, 2005, 74, 2317-2322.	0.7	8
106	Tridentate Nitrogen-Based Ligands in Cu-Based ATRP:  A Structureâ^'Activity Study. Macromolecules, 2001, 34, 430-440.	2.2	198
107	Free-Radical Intermediates in Atom Transfer Radical Addition and Polymerization:  Study of Racemization, Halogen Exchange, and Trapping Reactions. Macromolecules, 2001, 34, 3127-3129.	2.2	45
108	Determination of Activation and Deactivation Rate Constants of Model Compounds in Atom Transfer Radical Polymerization1. Macromolecules, 2001, 34, 5125-5131.	2.2	178

#	Article	IF	CITATIONS
109	An Immobilized/Soluble Hybrid Catalyst System for Atom Transfer Radical Polymerization. Macromolecules, 2001, 34, 5099-5102.	2.2	80
110	Novel segmented copolymers by combination of controlled ionic and radical polymerizations. Macromolecular Symposia, 2000, 157, 183-192.	0.4	6
111	Kinetic Investigation of the Atom Transfer Radical Polymerization of Methyl Acrylate. Macromolecules, 1999, 32, 1767-1776.	2.2	157
112	Polymerization of Vinyl Acetate Promoted by Iron Complexes. Macromolecules, 1999, 32, 8310-8314.	2.2	93
113	An Investigation into the CuX/2,2'-Bipyridine (X = Br or Cl) Mediated Atom Transfer Radical Polymerization of Acrylonitrile. Macromolecules, 1999, 32, 6431-6438.	2.2	185
114	Synthesis and characterization of graft copolymers of poly(vinyl chloride) with styrene and (meth)acrylates by atom transfer radical polymerization. Macromolecular Rapid Communications, 1998, 19, 47-52.	2.0	120
115	Block Copolymers by Transformation of Living Ring-Opening Metathesis Polymerization into Controlled/"Living―Atom Transfer Radical Polymerization. Macromolecules, 1997, 30, 6513-6516.	2.2	156
116	Synthesis of Well-Defined Polyacrylonitrile by Atom Transfer Radical Polymerization. Macromolecules, 1997, 30, 6398-6400.	2.2	215