

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2788201/publications.pdf Version: 2024-02-01

Vilin

#	Article	IF	CITATIONS
1	Recollision-Induced Superradiance of Ionized Nitrogen Molecules. Physical Review Letters, 2015, 115, 133203.	7.8	131
2	Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses. Optics Express, 2013, 21, 22791.	3.4	115
3	Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses. Optics Express, 2014, 22, 12750.	3.4	112
4	Plasma Luminescence from Femtosecond Filaments in Air: Evidence for Impact Excitation with Circularly Polarized Light Pulses. Physical Review Letters, 2015, 114, 063003.	7.8	83
5	Backward Lasing of Air plasma pumped by Circularly polarized femtosecond pulses for the saKe of remote sensing (BLACK). Optics Express, 2014, 22, 29964.	3.4	59
6	Lasing of ambient air with microjoule pulse energy pumped by a multi-terawatt infrared femtosecond laser. Optics Letters, 2014, 39, 1725.	3.3	56
7	Unexpected Sensitivity of Nitrogen Ions Superradiant Emission on Pump Laser Wavelength and Duration. Physical Review Letters, 2017, 119, 203205.	7.8	47
8	Re-evaluation of the peak intensity inside a femtosecond laser filament in air. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 094003.	1.5	37
9	Coherent modulation of superradiance from nitrogen ions pumped with femtosecond pulses. Optics Express, 2019, 27, 12638.	3.4	33
10	Laser-induced periodic annular surface structures on fused silica surface. Applied Physics Letters, 2013, 102, 251103.	3.3	31
11	Lasing dynamics of neutral nitrogen molecules in femtosecond filaments. Physical Review A, 2016, 94, .	2.5	28
12	Recent Advances in Air Lasing: A Perspective from Quantum Coherence. Advanced Quantum Technologies, 2019, 2, 1900080.	3.9	26
13	Coherent control of boosted terahertz radiation from air plasma pumped by a femtosecond three-color sawtooth field. Physical Review A, 2020, 102, .	2.5	23
14	Coherent control of the multiple wavelength lasing of \${m N}_2^ +\$: coherence transfer and beyond. Optica, 2021, 8, 668.	9.3	17
15	Formation Dynamics of Excited Neutral Nitrogen Molecules inside Femtosecond Laser Filaments. Physical Review Letters, 2019, 123, 243203.	7.8	16
16	Backward lasing of singly ionized nitrogen ions pumped by femtosecond laser pulses. Applied Physics B: Lasers and Optics, 2020, 126, 1.	2.2	10
17	Theory of femtosecond strong field ion excitation and subsequent lasing in N2+. New Journal of Physics, 2021, 23, 023035.	2.9	10
18	Excitation of nitrogen molecular ions in a strong laser field by electron recollisions. European Physical Journal D, 2017, 71, 1.	1.3	7

Yı Lıu

#	Article	IF	CITATIONS
19	Formation Mechanism of Excited Neutral Nitrogen Molecules Pumped by Intense Femtosecond Laser Pulses. Journal of Physical Chemistry Letters, 2020, 11, 7702-7708.	4.6	7
20	Tunable broadband THz emission from air plasma pumped by femtosecond pulses composed of a fundamental frequency with its detuned second harmonic. Optics Communications, 2022, 505, 127532.	2.1	7
21	Modeling of the processes of ionization and excitation of nitrogen molecules by short and intense laser pulses. Physical Review A, 2021, 104, .	2.5	7
22	Modulated terahertz generation in femtosecond laser plasma filaments by high-field spintronic terahertz pulses. Applied Physics Letters, 2022, 120, .	3.3	7
23	Femtosecond laser-induced quantum-beat superfluorescence of atomic oxygen in a flame. Physical Review A, 2021, 104, .	2.5	5
24	Two-dimensional suprawavelength periodic surface structuring of a ZnO single crystal with a UV femtosecond laser. Optics Express, 2021, 29, 30772.	3.4	5
25	Phase-Type Fresnel Zone Plate with Multi-Wavelength Imaging Embedded in Fluoroaluminate Glass Fabricated via Ultraviolet Femtosecond Laser Lithography. Micromachines, 2021, 12, 1362.	2.9	5
26	Micropattern-assisted absorption enhancement and wettability surface on ZnO via single femtosecond laser beam tailoring. Optics and Laser Technology, 2022, 150, 107979.	4.6	3
27	Coherently controlled ionization of gases by three-color femtosecond laser pulses. Physical Review A, 2022, 105, .	2.5	3
28	Understanding the Seeding Pulse-Induced Optical Amplification in N 2 + Pumped by 800 NM Femtosecond Laser Pulses. Photonics, 2020, 7, 99.	2.0	2
29	Optical amplification and gain dynamics of cavity-free lasing of argon pumped by ultraviolet femtosecond pulses. Optics Express, 2022, 30, 17156.	3.4	Ο