Khara D Grieger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2787879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology, 2008, 17, 387-395.	2.4	655
2	Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off?. Journal of Contaminant Hydrology, 2010, 118, 165-183.	3.3	333
3	A framework for One Health research. One Health, 2017, 3, 44-50.	3.4	137
4	Environmental risk analysis for nanomaterials: Review and evaluation of frameworks. Nanotoxicology, 2012, 6, 196-212.	3.0	96
5	The known unknowns of nanomaterials: Describing and characterizing uncertainty within environmental, health and safety risks. Nanotoxicology, 2009, 3, 222-233.	3.0	78
6	Modeling Approaches for Characterizing and Evaluating Environmental Exposure to Engineered Nanomaterials in Support of Risk-Based Decision Making. Environmental Science & Technology, 2013, 47, 1190-1205.	10.0	72
7	Effect of microplastics on ecosystem functioning: Microbial nitrogen removal mediated by benthic invertebrates. Science of the Total Environment, 2021, 754, 142133.	8.0	68
8	Setting the limits for engineered nanoparticles in European surface waters – are current approaches appropriate?. Journal of Environmental Monitoring, 2009, 11, 1774.	2.1	67
9	Emerging lanthanum (III)-containing materials for phosphate removal from water: A review towards future developments. Environment International, 2020, 145, 106115.	10.0	62
10	Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals?. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	58
11	Redefining risk research priorities for nanomaterials. Journal of Nanoparticle Research, 2010, 12, 383-392.	1.9	57
12	Emerging Technologies for Environmental Remediation: Integrating Data and Judgment. Environmental Science & Technology, 2016, 50, 349-358.	10.0	50
13	Accessing Legacy Phosphorus in Soils. Soil Systems, 2020, 4, 74.	2.6	35
14	Influence of natural organic matter and pH on phosphate removal by and filterable lanthanum release from lanthanum-modified bentonite. Water Research, 2021, 202, 117399.	11.3	32
15	Risk Governance of Nanomaterials: Review of Criteria and Tools for Risk Communication, Evaluation, and Mitigation. Nanomaterials, 2019, 9, 696.	4.1	31
16	Best practices from nano-risk analysis relevant for other emerging technologies. Nature Nanotechnology, 2019, 14, 998-1001.	31.5	30
17	Community-led governance for gene-edited crops. Science, 2020, 370, 916-918.	12.6	30
18	Prioritizing research needs for analytical techniques suited for engineered nanomaterials in food. Trends in Food Science and Technology, 2016, 50, 219-229.	15.1	23

Khara D Grieger

#	Article	IF	CITATIONS
19	The role of alternative testing strategies in environmental risk assessment of engineered nanomaterials. Environmental Science: Nano, 2017, 4, 292-301.	4.3	23
20	From risk perception to risk governance in nanotechnology: a multi-stakeholder study. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	22
21	Bioaccumulation and Translocation of 6:2 Fluorotelomer Sulfonate, GenX, and Perfluoroalkyl Acids by Urban Spontaneous Plants. ACS ES&T Engineering, 2022, 2, 1169-1178.	7.6	20
22	Operationalization and application of "early warning signs―to screen nanomaterials for harmful properties. Environmental Sciences: Processes and Impacts, 2013, 15, 190-203.	3.5	19
23	A relative ranking approach for nano-enabled applications to improve risk-based decision making: a case study of Army materiel. Environment Systems and Decisions, 2015, 35, 42-53.	3.4	19
24	Barriers to responsible innovation of nanotechnology applications in food and agriculture: A study of US experts and developers. NanoImpact, 2021, 23, 100326.	4.5	18
25	Conceptual modeling for identification of worst case conditions in environmental risk assessment of nanomaterials using nZVI and C60 as case studies. Science of the Total Environment, 2011, 409, 4109-4124.	8.0	15
26	Biological interactions between nanomaterials and placental development and function following oral exposure. Reproductive Toxicology, 2019, 90, 150-165.	2.9	13
27	Conscious worst case definition for risk assessment, part I. Science of the Total Environment, 2010, 408, 3852-3859.	8.0	12
28	A web-based tool to engage stakeholders in informing research planning for future decisions on emerging materials. Science of the Total Environment, 2014, 470-471, 660-668.	8.0	12
29	International Implications of Labeling Foods Containing Engineered Nanomaterials. Journal of Food Protection, 2016, 79, 830-842.	1.7	12
30	Emerging risk governance for stratospheric aerosol injection as a climate management technology. Environment Systems and Decisions, 2019, 39, 371-382.	3.4	12
31	(Broken) Promises of Sustainable Food and Agriculture through New Biotechnologies: The CRISPR Case. CRISPR Journal, 2021, 4, 25-31.	2.9	12
32	Responsible Innovation Definitions, Practices, and Motivations from Nanotechnology Researchers in Food and Agriculture. NanoEthics, 2021, 15, 229-243.	0.8	11
33	Responsible innovation of nano-agrifoods: Insights and views from U.S. stakeholders. NanoImpact, 2021, 24, 100365.	4.5	8
34	Benefit-risk trade-offs in retrospect: how major stakeholders perceive the decision-making process in the Barents Sea oil field development. Journal of Risk Research, 2013, 16, 1163-1185.	2.6	7
35	Application and testing of risk screening tools for nanomaterial risk analysis. Environmental Science: Nano, 2018, 5, 1844-1858.	4.3	7
36	Data dialogues: critical connections for designing and implementing future nanomaterial research. Environment Systems and Decisions, 2015, 35, 76-87.	3.4	4

Khara D Grieger

#	Article	IF	CITATIONS
37	Risk Assessment, Life Cycle Assessment, and Decision Methods for Nanomaterials. , 2015, , 383-419.		4
38	Fostering Responsible Innovation through Stakeholder Engagement: Case Study of North Carolina Sweetpotato Stakeholders. Sustainability, 2022, 14, 2274.	3.2	4
39	Formulating best practices for responsible innovation of nano-agrifoods through stakeholder insights and reflection. Journal of Responsible Technology, 2022, 10, 100030.	1.8	4
40	Assessing the impacts of urbanization on stream ecosystem functioning through investigating litter decomposition and nutrient uptake in a forest and a hyper-eutrophic urban stream. Ecological Indicators, 2022, 138, 108859.	6.3	4
41	Sustainable Environmental Remediation Using NZVI by Managing Benefit-Risk Trade-Offs. , 2019, , 511-562.		3
42	Informing environmental health and risk priorities through local outreach and extension. Environment Systems and Decisions, 2022, 42, 388-401.	3.4	3
43	What Role Does Regulation Play in Responsible Innovation of Nanotechnology in Food and Agriculture? Insights and Framings from U.S. Stakeholders. Bulletin of Science, Technology and Society, 0, , 027046762211020.	2.9	2
44	Environmental Risk Assessment of Emerging Contaminants—The Case of Nanomaterials. , 2022, , 349-371.		1