Il-ho Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2787498/publications.pdf

Version: 2024-02-01

	236925	214800
2,861	25	47
citations	h-index	g-index
53	53	5081
docs citations	times ranked	citing authors
	citations 53	2,861 25 citations h-index 53 53

#	Article	IF	CITATIONS
1	Revisiting the role of lysophosphatidic acid in stem cell biology. Experimental Biology and Medicine, 2021, 246, 1802-1809.	2.4	4
2	Facilitation of Bone Healing Processes Based on the Developmental Function of Meox2 in Tooth Loss Lesion. International Journal of Molecular Sciences, 2020, 21, 8701.	4.1	7
3	Oncostatin M enhances osteogenic differentiation of dental pulp stem cells derived from supernumerary teeth. Biochemical and Biophysical Research Communications, 2020, 529, 169-174.	2.1	4
4	NELL2 Function in Axon Development of Hippocampal Neurons. Molecules and Cells, 2020, 43, 581-589.	2.6	2
5	Cancer upregulated gene 2 (CUG2), a novel oncogene, promotes stemness-like properties via the NPM1-TGF-Î ² signaling axis. Biochemical and Biophysical Research Communications, 2019, 514, 1278-1284.	2.1	13
6	Inhibitory Effect of KP-A038 on Osteoclastogenesis and Inflammatory Bone Loss Is Associated With Downregulation of Blimp1. Frontiers in Pharmacology, 2019, 10, 367.	3.5	15
7	N-Acetylated Proline-Glycine-Proline Accelerates Cutaneous Wound Healing and Neovascularization by Human Endothelial Progenitor Cells. Scientific Reports, 2017, 7, 43057.	3.3	28
8	Functional expression and pharmaceutical efficacy of cardiac-specific ion channels in human embryonic stem cell-derived cardiomyocytes. Scientific Reports, 2017, 7, 13821.	3.3	3
9	Role of Kr $\tilde{A}^{1}\!\!/\!\!4$ ppel-Like Factor 4 in the Maintenance of Chemoresistance of Anaplastic Thyroid Cancer. Thyroid, 2017, 27, 1424-1432.	4.5	22
10	Trib2 regulates the pluripotency of embryonic stem cells and enhances reprogramming efficiency. Experimental and Molecular Medicine, 2017, 49, e401-e401.	7.7	17
11	Formyl Peptide Receptor 2 Is Involved in Cardiac Repair After Myocardial Infarction Through Mobilization of Circulating Angiogenic Cells. Stem Cells, 2017, 35, 654-665.	3.2	33
12	Identification of a novel angiogenic peptide from periostin. PLoS ONE, 2017, 12, e0187464.	2.5	12
13	Role of TAZ in Lysophosphatidic Acid-Induced Migration and Proliferation of Human Adipose-Derived Mesenchymal Stem Cells. Biomolecules and Therapeutics, 2017, 25, 354-361.	2.4	5
14	The anti-microbial peptide SR-0379 stimulates human endothelial progenitor cell-mediated repair of peripheral artery diseases. BMB Reports, 2017, 50, 504-509.	2.4	3
15	Selective Fluidization of Synaptosomal Plasma Membrane Vesicles by 17β-Estradiol. Biomedical Science Letters, 2017, 23, 17-24.	0.3	O
16	FOXP1 functions as an oncogene in promoting cancer stem cell-like characteristics in ovarian cancer cells. Oncotarget, 2016, 7, 3506-3519.	1.8	65
17	Autotaxin Regulates Maintenance of Ovarian Cancer Stem Cells through Lysophosphatidic Acid-Mediated Autocrine Mechanism. Stem Cells, 2016, 34, 551-564.	3.2	90
18	Biomedical therapy using synthetic WKYMVm hexapeptide. Organogenesis, 2016, 12, 53-60.	1.2	9

#	Article	IF	CITATIONS
19	Crucial role of HMGA1 in the self-renewal and drug resistance of ovarian cancer stem cells. Experimental and Molecular Medicine, 2016, 48, e255-e255.	7.7	51
20	Phospholipid End-Capped Bioreducible Polyurea Micelles as a Potential Platform for Intracellular Drug Delivery of Doxorubicin in Tumor Cells. ACS Biomaterials Science and Engineering, 2016, 2, 1883-1893.	5.2	10
21	Synthesis and Characterization of Water-Soluble Conjugated Oligoelectrolytes for Near-Infrared Fluorescence Biological Imaging. ACS Applied Materials & Enterfaces, 2016, 8, 15937-15947.	8.0	29
22	Hypoxia-NOTCH1-SOX2 signaling is important for maintaining cancer stem cells in ovarian cancer. Oncotarget, 2016, 7, 55624-55638.	1.8	84
23	A FRET Assay for Celiac Disease. Biomedical Science Letters, 2016, 22, 160-166.	0.3	O
24	Stimulation of cutaneous wound healing by an FPR2â€specific peptide agonist WKYMVm. Wound Repair and Regeneration, 2015, 23, 575-582.	3.0	22
25	Injectable PLGA microspheres encapsulating WKYMVM peptide for neovascularization. Acta Biomaterialia, 2015, 25, 76-85.	8.3	23
26	Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood, 2015, 125, 1418-1426.	1.4	40
27	Role of formyl peptide receptor 2 in homing of endothelial progenitor cells and therapeutic angiogenesis. Advances in Biological Regulation, 2015, 57, 162-172.	2.3	12
28	Periostin Accelerates Bone Healing Mediated by Human Mesenchymal Stem Cell-Embedded Hydroxyapatite/Tricalcium Phosphate Scaffold. PLoS ONE, 2015, 10, e0116698.	2.5	32
29	Isolation of Foreign Material-Free Endothelial Progenitor Cells Using CD31 Aptamer and Therapeutic Application for Ischemic Injury. PLoS ONE, 2015, 10, e0131785.	2.5	21
30	Therapeutic angiogenesis in a murine model of limb ischemia by recombinant periostin and its fasciclin I domain. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1324-1332.	3.8	22
31	WKYMVm-Induced Activation of Formyl Peptide Receptor 2 Stimulates Ischemic Neovasculogenesis by Promoting Homing of Endothelial Colony-Forming Cells. Stem Cells, 2014, 32, 779-790.	3.2	69
32	Reptin Regulates Pluripotency of Embryonic Stem Cells and Somatic Cell Reprogramming Through Oct4-Dependent Mechanism. Stem Cells, 2014, 32, 3126-3136.	3.2	10
33	Tumor necrosis factor-α-activated mesenchymal stem cells promote endothelial progenitor cell homing and angiogenesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 2136-2144.	3.8	112
34	Signaling axis involving Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic transition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E141-E150.	7.1	58
35	Efficient Production of Retroviruses Using PLGA/bPEI-DNA Nanoparticles and Application for Reprogramming Somatic Cells. PLoS ONE, 2013, 8, e76875.	2.5	10
36	Metabolic Regulation of Protein N-Alpha-Acetylation by Bcl-xL Promotes Cell Survival. Cell, 2011, 146, 607-620.	28.9	185

#	Article	IF	Citations
37	Neonatal Recipients Offer Permissive Hematopoietic Microenvironment for Engraftment of Embryonic Murine Hematopoietic Stem Cells. Blood, 2011, 118, 2344-2344.	1.4	O
38	Cdk5 phosphorylates PLD2 to mediate EGF-dependent insulin secretion. Cellular Signalling, 2008, 20, 1787-1794.	3.6	40
39	BMP and Wnt Specify Hematopoietic Fate by Activation of the Cdx-Hox Pathway. Cell Stem Cell, 2008, 2, 72-82.	11.1	192
40	Modulation of murine embryonic stem cell–derived CD41+c-kit+ hematopoietic progenitors by ectopic expression of Cdx genes. Blood, 2008, 111, 4944-4953.	1.4	48
41	Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature, 2007, 447, 1007-1011.	27.8	1,037
42	BMP Signaling Via the Cdx-Hox Pathway Allocates Mesoderm to Hematopoietic vs Cardiac Fates Blood, 2006, 108, 4183-4183.	1.4	0
43	Prostaglandin E2 Is a Potent Regulator of Vertebrate Hematopoietic Stem Cell Homeostasis Blood, 2006, 108, 680-680.	1.4	0
44	Phosphatidylinositol (3,4,5)-trisphosphate specifically interacts with the phox homology domain of phospholipase D1 and stimulates its activity. Journal of Cell Science, 2005, 118, 4405-4413.	2.0	53
45	Munc-18-1 Inhibits Phospholipase D Activity by Direct Interaction in an Epidermal Growth Factor-reversible Manner. Journal of Biological Chemistry, 2004, 279, 16339-16348.	3.4	33
46	Sensitization of Epidermal Growth Factor-induced Signaling by Bradykinin Is Mediated by c-Src. Journal of Biological Chemistry, 2004, 279, 5852-5860.	3.4	65
47	Localization of VEGFR-2 and PLD2 in endothelial caveolae is involved in VEGF-induced phosphorylation of MEK and ERK. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1881-H1888.	3.2	62
48	Regulation of phospholipase D2 by GTP-dependent interaction with dynamin. Advances in Enzyme Regulation, 2004, 44, 249-264.	2.6	7
49	Localization of Tie2 and phospholipase D in endothelial caveolae is involved in angiopoietin-1-induced MEK/ERK phosphorylation and migration in endothelial cells. Biochemical and Biophysical Research Communications, 2003, 308, 101-105.	2.1	38
50	The Direct Interaction of Phospholipase C-Î ³ 1 with Phospholipase D2 Is Important for Epidermal Growth Factor Signaling. Journal of Biological Chemistry, 2003, 278, 18184-18190.	3.4	48
51	Localization of phospholipase $C-\hat{l}^31$ signaling in caveolae: importance in EGF-induced phosphoinositide hydrolysis but not in tyrosine phosphorylation. FEBS Letters, 2001, 491, 4-8.	2.8	35
52	Phospholipase D1 Is Phosphorylated and Activated by Protein Kinase C in Caveolin-enriched Microdomains within the Plasma Membrane. Journal of Biological Chemistry, 2000, 275, 13621-13627.	3.4	76