Hua Deng

List of Publications by Citations

Source: https://exaly.com/author-pdf/2787027/hua-deng-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

84 4,978 37 70 g-index

87 5,654 7.1 5.71 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
84	Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. <i>Progress in Polymer Science</i> , 2014 , 39, 627-655	29.6	460
83	Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. <i>Progress in Polymer Science</i> , 2012 , 37, 1425-1455	29.6	295
82	New Understanding in Tuning Toughness of EPolypropylene: The Role of ENucleated Crystalline Morphology. <i>Macromolecules</i> , 2009 , 42, 9325-9331	5.5	241
81	Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer. <i>ACS Applied Materials & Distributed Material</i>	9.5	203
80	Tailoring impact toughness of poly(L-lactide)/poly(Etaprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. <i>ACS Applied Materials & Description of PLLA matrix</i> . <i>ACS Applied Materials & Description</i> .	9.5	188
79	Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading. <i>Composites Science and Technology</i> , 2013 , 74, 1-5	8.6	176
78	Control of Crystal Morphology in Poly(l-lactide) by Adding Nucleating Agent. <i>Macromolecules</i> , 2011 , 44, 1233-1237	5.5	171
77	A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite. <i>Nanotechnology</i> , 2011 , 22, 045704	3.4	167
76	Conductive network formation in the melt of carbon nanotube/thermoplastic polyurethane composite. <i>Composites Science and Technology</i> , 2009 , 69, 1499-1504	8.6	148
75	Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9449		134
74	The resistivityEtrain behavior of conductive polymer composites: stability and sensitivity. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17085-17098	13	132
73	Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: The effect on electrical conductivity and tuneable sensing behaviour. <i>Composites Science and Technology</i> , 2013 , 74, 85-90	8.6	131
72	Significantly improving oxygen barrier properties of polylactide via constructing parallel-aligned shish-kebab-like crystals with well-interlocked boundaries. <i>Biomacromolecules</i> , 2014 , 15, 1507-14	6.9	121
71	Effect of melting and crystallization on the conductive network in conductive polymer composites. <i>Polymer</i> , 2009 , 50, 3747-3754	3.9	120
70	New insight on the annealing induced microstructural changes and their roles in the toughening of Form polypropylene. <i>Polymer</i> , 2011 , 52, 2351-2360	3.9	113
69	Carbon nanotube polymer coatings for textile yarns with good strain sensing capability. <i>Sensors and Actuators A: Physical</i> , 2012 , 179, 83-91	3.9	107
68	Preparation of High-Performance Conductive Polymer Fibers through Morphological Control of Networks Formed by Nanofillers. <i>Advanced Functional Materials</i> , 2010 , 20, 1424-1432	15.6	107

(2020-2011)

67	The preparation of high performance and conductive poly (vinyl alcohol)/graphene nanocomposite via reducing graphite oxide with sodium hydrosulfite. <i>Composites Science and Technology</i> , 2011 , 71, 126	6 ⁸ f270	94	
66	Selective localization of multi-walled carbon nanotubes in thermoplastic elastomer blends: An effective method for tunable resistivity Itrain sensing behavior. <i>Composites Science and Technology</i> , 2014 , 92, 16-26	8.6	93	
65	Recent progress on thermal conductive and electrical insulating polymer composites. <i>Composites Communications</i> , 2018 , 8, 74-82	6.7	81	
64	Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 6835-44	9.5	77	
63	Superior reinforcement in melt-spun polyethylene/multiwalled carbon nanotube fiber through formation of a shish-kebab structure. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 10693-702	3.4	76	
62	The optimization of thermoelectric properties in a PEDOT:PSS thin film through post-treatment. <i>RSC Advances</i> , 2015 , 5, 1910-1917	3.7	73	
61	Towards tunable resistivity Itrain behavior through construction of oriented and selectively distributed conductive networks in conductive polymer composites. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10048-10058	13	67	
60	Anisotropic multilayer conductive networks in carbon nanotubes filled polyethylene/polypropylene blends obtained through high speed thin wall injection molding. <i>Polymer</i> , 2013 , 54, 6425-6436	3.9	65	
59	Preparation of high performance conductive polymer fibres from double percolated structure. Journal of Materials Chemistry, 2011 , 21, 6401		65	
58	Fabrication of Highly Stretchable, Washable, Wearable, Water-Repellent Strain Sensors with Multi-Stimuli Sensing Ability. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 31655-31663	9.5	61	
57	Fabrication of highly stretchable conductors via morphological control of carbon nanotube network. <i>Small</i> , 2013 , 9, 3620-9	11	59	
56	Significant Enhancement of Thermal Conductivity in Polymer Composite via Constructing Macroscopic Segregated Filler Networks. <i>ACS Applied Materials & ACS ADD & ACS A</i>	9.5	55	
55	The preparation and properties of polystyrene/functionalized graphene nanocomposite foams using supercritical carbon dioxide. <i>Polymer International</i> , 2013 , 62, 1077-1084	3.3	55	
54	Modified resistivity Itrain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes. <i>Polymer International</i> , 2013 , 62, 134-140	3.3	54	
53	Hierarchical structure of injection-molded bars of HDPE/MWCNTs composites with novel nanohybrid shish debab. <i>Polymer</i> , 2010 , 51, 774-782	3.9	54	
52	A Novel Concept for Highly Oriented Carbon Nanotube Composite Tapes or Fibres with High Strength and Electrical Conductivity. <i>Macromolecular Materials and Engineering</i> , 2009 , 294, 749-755	3.9	51	
51	Graphene/thermoplastic polyurethane nanocomposites: Surface modification of graphene through oxidation, polyvinyl pyrrolidone coating and reduction. <i>Composites Part A: Applied Science and Manufacturing</i> , 2015 , 68, 264-275	8.4	48	
50	Recent progress on PEDOT:PSS based polymer blends and composites for flexible electronics and thermoelectric devices. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 3130-3152	7.8	48	

49	Towards high-performance poly(L-lactide)/elastomer blends with tunable interfacial adhesion and matrix crystallization via constructing stereocomplex crystallites at the interface. <i>RSC Advances</i> , 2014 , 4, 49374-49385	3.7	43
48	Effect of annealing on the microstructure and mechanical properties of polypropylene with oriented shish-kebab structure. <i>Polymer International</i> , 2012 , 61, 252-258	3.3	39
47	Effect of thermal annealing on the electrical conductivity of high-strength bicomponent polymer tapes containing carbon nanofillers. <i>Synthetic Metals</i> , 2010 , 160, 337-344	3.6	35
46	Nickel hydroxide as novel filler for high energy density dielectric polymer composites. <i>Composites Science and Technology</i> , 2019 , 172, 117-124	8.6	32
45	Stretchable and Healable Conductive Elastomer Based on PEDOT:PSS/Natural Rubber for Self-Powered Temperature and Strain Sensing. <i>ACS Applied Materials & Description of the Power of the P</i>	-14511	31
44	Enhanced thermal conductivity and electrical insulation properties of polymer composites via constructing Pglass/CNTs confined hybrid fillers. <i>Composites Part A: Applied Science and Manufacturing</i> , 2018 , 115, 1-7	8.4	30
43	Enhanced thermoelectric properties of PEDOT:PSS films via a novel two-step treatment. <i>RSC Advances</i> , 2015 , 5, 105592-105599	3.7	29
42	A novel route towards tunable piezoresistive behavior in conductive polymer composites: Addition of insulating filler with different size and surface characteristics. <i>Composites Part A: Applied Science and Manufacturing</i> , 2017 , 96, 99-109	8.4	26
41	Confine Clay in an Alternating Multilayered Structure through Injection Molding: A Simple and Efficient Route to Improve Barrier Performance of Polymeric Materials. <i>ACS Applied Materials & Materials amp; Interfaces</i> , 2015 , 7, 10178-89	9.5	26
40	An environmentally friendly and fast approach to prepare reduced graphite oxide with water and organic solvents solubility. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 101, 171-6	6	26
39	Preparation, structure and properties of thermoplastic olefin nanocomposites containing functionalized carbon nanotubes. <i>Polymer International</i> , 2011 , 60, 1629-1637	3.3	25
38	Extension-induced mechanical reinforcement in melt-spun fibers of polyamide 66/multiwalled carbon nanotube composites. <i>Polymer International</i> , 2011 , 60, 1646-1654	3.3	25
37	Enhanced dielectric properties through using mixed fillers consisting of nano-barium titanate/nickel hydroxide for polyvinylidene fluoride based composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2018 , 104, 24-31	8.4	24
36	High mechanical reinforcing efficiency of layered poly(vinyl alcohol) Igraphene oxide nanocomposites. <i>Nanocomposites</i> , 2015 , 1, 89-95	3.4	24
35	Synergistic Reinforcement of Highly Oriented Poly(propylene) Tapes by Sepiolite Nanoclay. <i>Macromolecular Materials and Engineering</i> , 2010 , 295, 37-47	3.9	24
34	Strengthening and toughening of thermoplastic polyolefin elastomer using polypropylene-grafted multiwalled carbon nanotubes. <i>Journal of Applied Polymer Science</i> , 2011 , 121, 2104-2112	2.9	23
33	Enhancement of Enucleated crystallization in polypropylene random copolymer via adding isotactic polypropylene. <i>Polymer</i> , 2012 , 53, 4861-4870	3.9	21
32	Dynamic percolation in highly oriented conductive networks formed with different carbon nanofillers. <i>Colloid and Polymer Science</i> , 2012 , 290, 1393-1401	2.4	21

(2021-2020)

31	Ultrasensitive Thin-Film Pressure Sensors with a Broad Dynamic Response Range and Excellent Versatility Toward Pressure, Vibration, Bending, and Temperature. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 20998-21008	9.5	19
30	Oriented Poly(lactic acid)/Carbon Nanotube Composite Tapes with High Electrical Conductivity and Mechanical Properties. <i>Macromolecular Materials and Engineering</i> , 2015 , 300, 1257-1267	3.9	17
29	Towards high-performance polypropylene and its random copolymer: Insight into toughening mechanism of supercritical carbon dioxide assisted annealing. <i>Journal of Supercritical Fluids</i> , 2014 , 87, 83-92	4.2	17
28	Improving tensile strength and toughness of melt processed polyamide 6/multiwalled carbon nanotube composites by in situ polymerization and filler surface functionalization. <i>Journal of Applied Polymer Science</i> , 2011 , 120, 133-140	2.9	17
27	Biomimetic Approach to Facilitate the High Filler Content in Free-Standing and Flexible Thermoelectric Polymer Composite Films Based on PVDF and AgSe Nanowires. <i>ACS Applied Materials & ACS Applied</i>	9.5	15
26	Recent Progress on the Confinement, Assembly, and Relaxation of Inorganic Functional Fillers in Polymer Matrix during Processing. <i>Macromolecular Rapid Communications</i> , 2017 , 38, 1700444	4.8	13
25	An unusual decrease in dielectric constant due to the addition of nickel hydroxide into silicone rubber. <i>Composites Part B: Engineering</i> , 2020 , 193, 108006	10	13
24	Combined effect of Enucleating agent and processing melt temperature on the toughness of impact polypropylene copolymer. <i>Polymer International</i> , 2013 , 62, 172-178	3.3	13
23	Morphology Evolution of Polymer Blends under Intense Shear During High Speed Thin-Wall Injection Molding. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 6257-6270	3.4	12
22	Processing of Poly(propylene)/Carbon Nanotube Composites using scCO2-Assisted Mixing. <i>Macromolecular Materials and Engineering</i> , 2010 , 295, 566-574	3.9	12
21	Shear induced formation and destruction behavior of conductive networks in nickel/polyurethane composites during strain sensing. <i>Composites Part A: Applied Science and Manufacturing</i> , 2020 , 130, 105	78 7	11
20	Tailoring toughness of injection molded bar of polypropylene random copolymer through processing melt temperature. <i>Polymer International</i> , 2011 , 60, 1705-1714	3.3	11
19	Improving high-temperature energy storage performance of PI dielectric capacitor films through boron nitride interlayer. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	11
18	Flexible and Giant Terahertz Modulation Based on Ultra-Strain-Sensitive Conductive Polymer Composites. <i>ACS Applied Materials & Acs Applied & Ac</i>	9.5	10
17	The effect of DBP of carbon black on the dynamic self-assembly in a polymer melt. <i>RSC Advances</i> , 2016 , 6, 24843-24852	3.7	10
16	Morphology and mechanical properties of poly(ethyleneoctene) copolymers obtained by dynamic packing injection molding. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2012 , 30, 603-612	3.5	9
15	High speed injection molding of high density polyethylene Æffects of injection speed on structure and properties. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2011 , 29, 456-464	3.5	9
14	A novel interpenetrating segregated functional filler network structure for ultra-high electrical conductivity and efficient EMI shielding in CPCs containing carbon nanotubes. <i>Materials Today Physics</i> , 2021 , 21, 100483	8	9

13	Toward multi-functional polymer composites through selectively distributing functional fillers. <i>Composites Part A: Applied Science and Manufacturing</i> , 2016 , 82, 20-33	8.4	8
12	Processing condition induced structural evolution in the alternating multi-layer structure during high speed thin-wall injection molding. <i>Polymer</i> , 2016 , 99, 49-58	3.9	8
11	"Toolbox" for the Processing of Functional Polymer Composites Nano-Micro Letters, 2021, 14, 35	19.5	8
10	Composite Membrane of Poly(vinylidene fluoride) and 2D Ni(OH)2 Nanosheets for High-Performance Lithium-Ion Battery. <i>ACS Applied Polymer Materials</i> , 2022 , 4, 960-970	4.3	5
9	Superior reinforcement in polyamide 1010/multiwalled carbon nanotube composites realized by high-rate drawing and incorporation of compatibilizer. <i>Polymer International</i> , 2012 , 61, 1400-1410	3.3	3
8	Strain sensing conductive polymer composites: Sensitivity and stability 2016,		3
7	A novel method to incorporate functional filler into TPSiV for balanced physical properties. <i>Composites Science and Technology</i> , 2021 , 213, 108925	8.6	3
6	Enhanced fracture energy during deformation through the construction of an alternating multilayered structure for polyolefin blends. <i>Polymer International</i> , 2018 , 67, 1094-1102	3.3	2
5	Alternating multilayer structure of polyethylene/polypropylene blends obtained through injection molding. <i>Journal of Applied Polymer Science</i> , 2012 , 124, n/a-n/a	2.9	2
4	The preparation of high performance Multi-functional porous sponge through a biomimic coating strategy based on polyurethane dendritic colloids. <i>Chemical Engineering Journal</i> , 2022 , 438, 135659	14.7	2
3	Fabricating high performance multi-functional hygroelectric generator through a biomimic approach. <i>Nano Energy</i> , 2022 , 98, 107241	17.1	2
2	Balanced physical properties for thermoplastic silicone vulcanizate-based polymer composites containing functional filler. <i>Polymer Composites</i> , 2020 , 41, 4307-4317	3	1
1	The influence of blend composition and filler on the microstructure, crystallization, and mechanical behavior of polymer blends with multilayered structures. <i>Nanocomposites</i> , 2018 , 4, 178-189	3.4	1