List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2786718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recovery, separation and production of fuel, plastic and aluminum from the Tetra PAK waste to hydrothermal and pyrolysis processes. Waste Management, 2022, 137, 179-189.	3.7	17
2	Characterization of liquid fraction obtained from pyrolysis of post-consumer mixed plastic waste: A comparing between measured and calculated parameters. Chemical Engineering Research and Design, 2022, 159, 1053-1063.	2.7	9
3	Innovative and environmental-friendly process to extract polyphenols, polyalcohols and furfural from olive cake by a biorefinery scheme. Journal of the Taiwan Institute of Chemical Engineers, 2022, 134, 104302.	2.7	Ο
4	Characterization of the Different Oils Obtained through the Catalytic In Situ Pyrolysis of Polyethylene Film from Municipal Solid Waste. Applied Sciences (Switzerland), 2022, 12, 4043.	1.3	2
5	Experimental investigation on the air gasification of olive cake at low temperatures. Fuel Processing Technology, 2021, 213, 106703.	3.7	18
6	Effect of different pre-treatments and addition of plastic on the properties of bio-oil obtained by pyrolysis of greenhouse crop residue. Journal of Analytical and Applied Pyrolysis, 2021, 153, 104977.	2.6	7
7	Characterization and Use of Char Produced from Pyrolysis of Post-Consumer Mixed Plastic Waste. Water (Switzerland), 2021, 13, 1188.	1.2	28
8	Olive-Oil Waste for the Removal of Heavy Metals from Wastewater. Environmental Chemistry for A Sustainable World, 2021, , 51-79.	0.3	0
9	Water washing for upgrading fuel properties of greenhouse crop residue from pepper. Renewable Energy, 2020, 145, 2121-2129.	4.3	17
10	Effects of distance to the sea and geomorphological characteristics on the quantity and distribution of microplastics in beach sediments of Granada (Spain). Science of the Total Environment, 2020, 746, 142023.	3.9	33
11	Liquid Hot Water Pretreatment and Enzymatic Hydrolysis as a Valorization Route of Italian Green Pepper Waste to Delivery Free Sugars. Foods, 2020, 9, 1640.	1.9	13
12	Performance of Different Catalysts for the In Situ Cracking of the Oil-Waxes Obtained by the Pyrolysis of Polyethylene Film Waste. Sustainability, 2020, 12, 5482.	1.6	15
13	Greenhouse Crop Residue and Its Derived Biochar: Potential as Adsorbent of Cobalt from Aqueous Solutions. Water (Switzerland), 2020, 12, 1282.	1.2	10
14	Microplastics as Vectors of Chromium and Lead during Dynamic Simulation of the Human Gastrointestinal Tract. Sustainability, 2020, 12, 4792.	1.6	28
15	The relevance of interaction of chemicals/pollutants and microplastic samples as route for transporting contaminants. Chemical Engineering Research and Design, 2020, 138, 312-323.	2.7	35
16	Hydrolyzed olive cake as novel adsorbent for copper removal from fertilizer industry wastewater. Journal of Cleaner Production, 2020, 268, 121935.	4.6	22
17	Production of an Alternative Fuel by Pyrolysis of Plastic Wastes Mixtures. Energy & Fuels, 2020, 34, 1781-1790.	2.5	53
18	Thermal analysis of olive tree pruning and the by-products obtained by its gasification and pyrolysis: The effect of some heavy metals on their devolatilization behavior. Journal of Energy Chemistry, 2019, 32, 105-117.	7.1	9

#	Article	IF	CITATIONS
19	Characterization of fuel produced by pyrolysis of plastic film obtained of municipal solid waste. Energy, 2019, 186, 115874.	4.5	59
20	The potential of microplastics as carriers of metals. Environmental Pollution, 2019, 255, 113363.	3.7	367
21	Integral exploitation from olive cake for energy production in a biorefinery scheme. Chemical Engineering Research and Design, 2019, 131, 135-143.	2.7	12
22	Column Leaching Tests to Valorize a Solid Waste from the Decommissioning of Coal-Fired Power Plants. Energies, 2019, 12, 1684.	1.6	0
23	Effective removal of zinc from industrial plating wastewater using hydrolyzed olive cake: Scale-up and preparation of zinc-Based biochar. Journal of Cleaner Production, 2019, 227, 634-644.	4.6	44
24	Optimization of the pyrolysis process of a plastic waste to obtain a liquid fuel using different mathematical models. Energy Conversion and Management, 2019, 188, 19-26.	4.4	59
25	Mixed solid waste from the decommissioning of coal-fired power plants as a resource of high value metals. Chemical Engineering Research and Design, 2019, 125, 9-15.	2.7	3
26	Study of the kinetic parameters of thermal and oxidative degradation of various residual materials. Biomass and Bioenergy, 2019, 124, 13-24.	2.9	6
27	Recovering Metals from Aqueous Solutions by Biosorption onto Hydrolyzed Olive Cake. Water (Switzerland), 2019, 11, 2519.	1.2	11
28	Physical-chemical characterization of microplastics present in some exfoliating products from Spain. Marine Pollution Bulletin, 2019, 139, 91-99.	2.3	75
29	The role of temperature on slow pyrolysis of olive cake for the production of solid fuels and adsorbents. Chemical Engineering Research and Design, 2019, 121, 209-220.	2.7	29
30	Influence of nickel during the thermal degradation of pine cone shell. Study of the environmental implications. Journal of Cleaner Production, 2018, 183, 403-414.	4.6	6
31	Kinetic study of thermal degradation of olive cake based on a scheme of fractionation and its behavior impregnated of metals. Bioresource Technology, 2018, 261, 104-116.	4.8	15
32	Scale-up of a packed bed column for wastewater treatment. Water Science and Technology, 2018, 77, 1386-1396.	1.2	27
33	Neural fuzzy modelization of copper removal from water by biosorption in fixed-bed columns using olive stone and pinion shell. Bioresource Technology, 2018, 252, 100-109.	4.8	38
34	Pyrolysis kinetics of the lead-impregnated olive stone by non-isothermal thermogravimetry. Chemical Engineering Research and Design, 2018, 113, 448-458.	2.7	22
35	A real case study of mechanical recycling as an alternative for managing of polyethylene plastic film presented in mixed municipal solid waste. Journal of Cleaner Production, 2018, 203, 777-787.	4.6	46
36	Optimization of the sugar hydrothermal extraction process from olive cake using neuro-fuzzy models. Bioresource Technology, 2018, 268, 81-90.	4.8	10

#	Article	IF	CITATIONS
37	Reaction schemes for estimating kinetic parameters of thermal decomposition of native and metal-loaded almond shell. Chemical Engineering Research and Design, 2018, 118, 234-244.	2.7	12
38	BINARY BIOSORPTION OF Cu(II)-Pb(II) MIXTURES ONTO PINE NUTS SHELL IN BATCH AND PACKED BED SYSTEMS. Environmental Engineering and Management Journal, 2018, 17, 1349-1361.	0.2	1
39	A novel methodology to characterize and to valorize a waste by a fractionation technology. Chemical Engineering Research and Design, 2017, 109, 140-150.	2.7	10
40	Kinetics of thermal decomposition of some biomasses in an inert environment. An investigation of the effect of lead loaded by biosorption. Waste Management, 2017, 70, 101-113.	3.7	19
41	Effect of torrefaction conditions on greenhouse crop residue: Optimization of conditions to upgrade solid characteristics. Bioresource Technology, 2017, 244, 741-749.	4.8	29
42	Kinetic modelling of torrefaction of olive tree pruning. Applied Thermal Engineering, 2017, 113, 1410-1418.	3.0	61
43	Study of the catalytic effect of nickel in the thermal decomposition of olive tree pruning via thermogravimetric analysis. Renewable Energy, 2017, 103, 825-835.	4.3	8
44	Kinetic study of the pyrolysis of pine cone shell through non-isothermal thermogravimetry: Effect of heavy metals incorporated by biosorption. Renewable Energy, 2016, 96, 613-624.	4.3	58
45	Binary biosorption of copper and lead onto pine cone shell in batch reactors and in fixed bed columns. International Journal of Mineral Processing, 2016, 148, 72-82.	2.6	66
46	Physic-Chemical Characterization of a Waste from Olive Industry. Key Engineering Materials, 2015, 663, 140-147.	0.4	0
47	Optimization of the use of a biosorbent to remove heavy metals: Regeneration and reuse of exhausted biosorbent. Journal of the Taiwan Institute of Chemical Engineers, 2015, 51, 109-118.	2.7	30
48	Comparison of two models for the biosorption of Pb(II) using untreated and chemically treated olive stone: Experimental design methodology and adaptive neural fuzzy inference system (ANFIS). Journal of the Taiwan Institute of Chemical Engineers, 2015, 54, 45-56.	2.7	28
49	Complete use of an agricultural waste: Application of untreated and chemically treated olive stone as biosorbent of lead ions and reuse as fuel. Chemical Engineering Research and Design, 2015, 104, 740-751.	2.7	10
50	Physico-chemical characterization of pine cone shell and its use as biosorbent and fuel. Bioresource Technology, 2015, 196, 406-412.	4.8	47
51	Comparative study of isotherm parameters of lead biosorption by two wastes of olive-oil production. Water Science and Technology, 2015, 72, 711-720.	1.2	11
52	Copper biosorption in the presence of lead onto olive stone and pine bark in batch and continuous systems. Environmental Progress and Sustainable Energy, 2014, 33, 192-204.	1.3	21
53	Biosorption of Cr ⁶⁺ from aqueous solution by sugarcane bagasse. Desalination and Water Treatment, 2014, 52, 5912-5922.	1.0	27
54	New treatment of real electroplating wastewater containing heavy metal ions by adsorption onto olive stone. Journal of Cleaner Production, 2014, 81, 120-129.	4.6	123

#	Article	IF	CITATIONS
55	Study of kinetics in the biosorption of lead onto native and chemically treated olive stone. Journal of Industrial and Engineering Chemistry, 2014, 20, 2754-2760.	2.9	40
56	Characterization and modeling of pyrolysis of the two-phase olive mill solid waste. Fuel Processing Technology, 2014, 126, 104-111.	3.7	45
57	Development and Characterization of Biosorbents To Remove Heavy Metals from Aqueous Solutions by Chemical Treatment of Olive Stone. Industrial & Engineering Chemistry Research, 2013, 52, 10809-10819.	1.8	47
58	Effect of lead in biosorption of copper by almond shell. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 466-473.	2.7	63
59	Characterization of chemically modified biosorbents from olive tree pruning for the biosorption of lead. Ecological Engineering, 2013, 58, 344-354.	1.6	84
60	Biosorption of Cu ²⁺ in a packed bed column by almond shell: optimization of process variables. Desalination and Water Treatment, 2013, 51, 1954-1965.	1.0	11
61	Chemical activation of olive tree pruning to remove lead(II) in batch system: Factorial design for process optimization. Biomass and Bioenergy, 2013, 58, 322-332.	2.9	23
62	Analysis of the kinetics of lead biosorption using native and chemically treated olive tree pruning. Ecological Engineering, 2013, 58, 278-285.	1.6	54
63	Evaluation of biosorption of copper ions onto pinion shell. Desalination and Water Treatment, 2013, 51, 2411-2422.	1.0	7
64	Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 275-281.	2.7	164
65	Copper biosorption by pine cone shell and thermal decomposition study of the exhausted biosorbent. Journal of Industrial and Engineering Chemistry, 2012, 18, 1741-1750.	2.9	62
66	Multiple biosorption–desorption cycles in a fixed-bed column for Pb(II) removal by acid-treated olive stone. Journal of Industrial and Engineering Chemistry, 2012, 18, 1006-1012.	2.9	65
67	Kinetic Modeling of the Biosorption of Lead(II) from Aqueous Solutions by Solid Waste Resulting from the Olive Oil Production. Journal of Chemical & Engineering Data, 2011, 56, 3053-3060.	1.0	19
68	Evaluation and comparison of the biosorption process of copper ions onto olive stone and pine bark. Journal of Industrial and Engineering Chemistry, 2011, 17, 824-833.	2.9	58
69	Factorial experimental design for optimizating the removal conditions of lead ions from aqueous solutions by three wastes of the olive-oil production. Desalination, 2011, 278, 132-140.	4.0	32
70	Batch and continuous packed column studies of chromium (III) biosorption by olive stone. Environmental Progress and Sustainable Energy, 2011, 30, 576-585.	1.3	26
71	Batch biosorption of lead(II) from aqueous solutions by olive tree pruning waste: Equilibrium, kinetics and thermodynamic study. Chemical Engineering Journal, 2011, 168, 170-177.	6.6	136
72	Potentiometric titrations for the characterization of functional groups on solid wastes of the olive oil production. Environmental Progress and Sustainable Energy, 2010, 29, 249-258.	1.3	2

#	Article	IF	CITATIONS
73	Equilibrium biosorption of lead(II) from aqueous solutions by solid waste from olive-oil production. Chemical Engineering Journal, 2010, 160, 615-622.	6.6	89
74	Modification of the sorptive characteristics of sugarcane bagasse for removing lead from aqueous solutions. Desalination, 2010, 256, 58-63.	4.0	97
75	Sorption of Cr (VI) onto Olive Stone in a Packed Bed Column: Prediction of Kinetic Parameters and Breakthrough Curves. Journal of Environmental Engineering, ASCE, 2010, 136, 1389-1397.	0.7	22
76	Effect of the Acid Treatment of Olive Stone on the Biosorption of Lead in a Packed-Bed Column. Industrial & Engineering Chemistry Research, 2010, 49, 12587-12595.	1.8	38
77	Biosorption kinetics of Cd (II), Cr (III) and Pb (II) in aqueous solutions by olive stone. Brazilian Journal of Chemical Engineering, 2009, 26, 265-273.	0.7	49
78	Effect of the Presence of Chromium (III) on the Removal of Lead (II) from Aqueous Solutions by Agricultural Wastes. Journal of Environmental Engineering, ASCE, 2009, 135, 1348-1356.	0.7	13
79	Study of Cr (III) biosorption in a fixed-bed column. Journal of Hazardous Materials, 2009, 171, 886-893.	6.5	211
80	The effect of pH on the biosorption of Cr (III) and Cr (VI) with olive stone. Chemical Engineering Journal, 2009, 148, 473-479.	6.6	142
81	Surface chemistry evaluation of some solid wastes from olive-oil industry used for lead removal from aqueous solutions. Biochemical Engineering Journal, 2009, 44, 151-159.	1.8	80
82	Contact Angle and Surface Tension in the Celestite + Alkylic Collector Aqueous Solutions + Air System. Journal of Chemical & Engineering Data, 2009, 54, 314-317.	1.0	1
83	Comparative study of the biosorption of cadmium(II), chromium(III), and lead(II) by olive stone. Environmental Progress, 2008, 27, 469-478.	0.8	35
84	Equilibrium modelling of Cr (VI) biosorption by olive stone. , 2008, , .		3
85	Surface Tension for Aqueous Solutions of Sodium 1-Dodecanesulfonate. Journal of Chemical & Engineering Data, 2006, 51, 1216-1219.	1.0	9
86	Equilibrium modeling of removal of cadmium ions by olive stones. Environmental Progress, 2006, 25, 261-266.	0.8	17
87	Removal of cadmium ions with olive stones: the effect of somes parameters. Process Biochemistry, 2005, 40, 2649-2654.	1.8	112
88	Kinetic considerations in the flotation of phosphate ore. Advanced Powder Technology, 2005, 16, 347-361.	2.0	12
89	Flotation of low-grade phosphate ore. Advanced Powder Technology, 2004, 15, 421-433.	2.0	24
90	Separation of the Soluble Salts KNO3 and NH4Cl by Flotation with Oleic Acid. Chemical Engineering Research and Design, 2003, 81, 963-970.	2.7	3

#	Article	IF	CITATIONS
91	Interaction probabilities in a four components aqueous two-phase system: polymer+salt+water+protein. Chemical Engineering Science, 2001, 56, 4451-4456.	1.9	2
92	Partition coefficients of α-amylase in aqueous two-phase systems PEG+MgSO4·7H2O+H2O at 298K. Biochimica Et Biophysica Acta - General Subjects, 1998, 1379, 191-197.	1.1	16
93	Liquidâ``Liquid Equilibrium in the System Poly(ethylene glycol) + MgSO4+ H2O at 298 K. Journal of Chemical & Engineering Data, 1996, 41, 1333-1336.	1.0	108
94	Influence of pH on the oxygen absorption kinetics in alkaline sodium dithionite solutions. Chemical Engineering Science, 1995, 50, 1181-1186.	1.9	6
95	Density and Viscosity of Concentrated Aqueous Solutions of Polyethylene Glycol. Journal of Chemical & Engineering Data, 1994, 39, 611-614.	1.0	192
96	Oxygen absorption in alkaline sodium dithionite solutions. Chemical Engineering Science, 1992, 47, 4309-4314.	1.9	17