Lev B Ryashko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2786122/publications.pdf

Version: 2024-02-01

		201385	329751
205	2,384	27	37
papers	citations	h-index	g-index
207	207	207	549
all docs	docs citations	times ranked	citing authors
			8

#	Article	IF	CITATIONS
1	Stochastic sensitivity of 3D-cycles. Mathematics and Computers in Simulation, 2004, 66, 55-67.	2.4	80
2	Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with Allee effect. Chaos, 2011, 21, 047514.	1.0	77
3	A first approximation of the quasipotential in problems of the stability of systems with random non-degenerate perturbations. Prikladnaya Matematika I Mekhanika, 1995, 59, 47-56.	0.4	72
4	Sensitivity analysis of the stochastically and periodically forced Brusselator. Physica A: Statistical Mechanics and Its Applications, 2000, 278, 126-139.	1.2	56
5	Analysis of excitability for the FitzHugh-Nagumo model via a stochastic sensitivity function technique. Physical Review E, 2011, 83, 061109.	0.8	56
6	Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of glycolysis. Chaos, 2018, 28, 033602.	1.0	52
7	Nonlinear dynamics of mushy layers induced by external stochastic fluctuations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170216.	1.6	52
8	Sensitivity and chaos control for the forced nonlinear oscillations. Chaos, Solitons and Fractals, 2005, 26, 1437-1451.	2.5	49
9	Stochastic sensitivity analysis of noise-induced suppression of firing and giant variability of spiking in a Hodgkin-Huxley neuron model. Physical Review E, 2015, 91, 052920.	0.8	49
10	Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances. Chaos, Solitons and Fractals, 2009, 39, 72-82.	2.5	40
11	Nonlinear climate dynamics: From deterministic behaviour to stochastic excitability and chaos. Physics Reports, 2021, 902, 1-60.	10.3	39
12	NOISE-INDUCED OSCILLATING BISTABILITY AND TRANSITION TO CHAOS IN FITZHUGH–NAGUMO MODEL. Fluctuation and Noise Letters, 2014, 13, 1450004.	1.0	38
13	Noise-induced torus bursting in the stochastic Hindmarsh-Rose neuron model. Physical Review E, 2017, 96, 032212.	0.8	38
14	Stochastic sensitivity analysis of noise-induced intermittency and transition to chaos in one-dimensional discrete-time systems. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 295-306.	1.2	37
15	On control of stochastic sensitivity. Automation and Remote Control, 2008, 69, 1171-1180.	0.4	36
16	Noise-induced bursting and chaos in the two-dimensional Rulkov model. Chaos, Solitons and Fractals, 2018, 110, 76-81.	2.5	33
17	Noise-induced shifts in the population model with a weak Allee effect. Physica A: Statistical Mechanics and Its Applications, 2018, 491, 28-36.	1.2	33
18	Confidence tori in the analysis of stochastic 3D-cycles. Mathematics and Computers in Simulation, 2009, 80, 256-269.	2.4	32

#	Article	IF	CITATIONS
19	Stochastic sensitivity analysis of the noise-induced excitability in a model of a hair bundle. Physical Review E, 2013, 87, 052711.	0.8	32
20	NOISE-INDUCED CHAOS AND BACKWARD STOCHASTIC BIFURCATIONS IN THE LORENZ MODEL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350092.	0.7	32
21	Stochastic sensitivity of the closed invariant curves for discrete-time systems. Physica A: Statistical Mechanics and Its Applications, 2014, 410, 236-243.	1.2	32
22	Stochastic analysis of a non-normal dynamical system mimicking a laminar-to-turbulent subcritical transition. Physical Review E, 2002, 66, 066310.	0.8	31
23	ANALYSIS OF STOCHASTIC CYCLES IN THE CHEN SYSTEM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 1439-1450.	0.7	31
24	Analysis of noise-induced transitions from regular to chaotic oscillations in the Chen system. Chaos, 2012, 22, 033104.	1.0	31
25	Analysis of noise effects in a map-based neuron model with Canard-type quasiperiodic oscillations. Communications in Nonlinear Science and Numerical Simulation, 2018, 63, 261-270.	1.7	30
26	Stochastic equilibria control and chaos suppression for 3D systems via stochastic sensitivity synthesis. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 3381-3389.	1.7	28
27	Sea Ice Dynamics Induced by External Stochastic Fluctuations. Pure and Applied Geophysics, 2013, 170, 2273-2282.	0.8	28
28	The stability of stochastically perturbed orbital motions. Prikladnaya Matematika I Mekhanika, 1996, 60, 579-590.	0.4	27
29	NOISE-INDUCED BACKWARD BIFURCATIONS OF STOCHASTIC 3D-CYCLES. Fluctuation and Noise Letters, 2010, 09, 89-106.	1.0	27
30	Non-Markovian models for migration-proliferation dichotomy of cancer cells: Anomalous switching and spreading rate. Physical Review E, 2011, 84, 061131.	0.8	27
31	Stochastic bifurcations caused by multiplicative noise in systems with hard excitement of auto-oscillations. Physical Review E, 2015, 92, 042908.	0.8	26
32	Stochastic dynamo model for subcritical transition. Physical Review E, 2006, 73, 066307.	0.8	25
33	Constructive analysis of noise-induced transitions for coexisting periodic attractors of the Lorenz model. Physical Review E, 2009, 79, 041106.	0.8	25
34	Stochastic sensitivity analysis of noise-induced excitement in a preyâ€"predator plankton system. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2011, 5, 141-148.	1.1	25
35	Controlling bistability in a stochastic perception model. European Physical Journal: Special Topics, 2015, 224, 1477-1484.	1.2	25
36	Stochastic Bifurcations and Noise-Induced Chaos in 3D Neuron Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1630032.	0.7	25

#	Article	IF	CITATIONS
37	On rheophysics of high-concentrated suspensions. Colloid Journal, 2009, 71, 446-454.	0.5	22
38	Order and chaos in the stochastic Hindmarsh–Rose model of the neuron bursting. Nonlinear Dynamics, 2015, 82, 919-932.	2.7	22
39	On exponentially attracting invariant manifolds of ODEs. Nonlinearity, 2003, 16, 147-160.	0.6	21
40	Noise-induced toroidal excitability in neuron model. Communications in Nonlinear Science and Numerical Simulation, 2020, 82, 105071.	1.7	20
41	Noise-induced spiking-bursting transition in the neuron model with the blue sky catastrophe. Physical Review E, 2019, 99, 062408.	0.8	19
42	Confidence Domains in the Analysis of Noise-Induced Transition to Chaos for Goodwin Model of Business Cycles. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1440020.	0.7	18
43	How environmental noise can contract and destroy a persistence zone in population models with Allee effect. Theoretical Population Biology, 2017, 115, 61-68.	0.5	18
44	Methods of Stochastic Analysis of Complex Regimes in the 3D Hindmarsh–Rose Neuron Model. Fluctuation and Noise Letters, 2018, 17, 1850008.	1.0	18
45	Stochastically driven transitions between climate attractors. Tellus, Series A: Dynamic Meteorology and Oceanography, 2014, 66, 23454.	0.8	17
46	Stochastic Bifurcations and Noise-Induced Chaos in a Dynamic Prey–Predator Plankton System. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1450109.	0.7	17
47	Controlling the equilibria of nonlinear stochastic systems based on noisy data. Journal of the Franklin Institute, 2017, 354, 1658-1672.	1.9	17
48	Analysis of nonlinear stochastic oscillations in the biochemical Goldbeter model. Communications in Nonlinear Science and Numerical Simulation, 2019, 73, 165-176.	1.7	17
49	Stochastic sensitivity of regular and multi-band chaotic attractors in discrete systems with parametric noise. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3203-3210.	0.9	16
50	THE ANALYSIS OF THE STOCHASTICALLY FORCED PERIODIC ATTRACTORS FOR CHUA'S CIRCUIT. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2004, 14, 3981-3987.	0.7	15
51	Stochastic sensitivity analysis of the attractors for the randomly forced Ricker model with delay. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 3600-3606.	0.9	14
52	How additive noise generates a phantom attractor in a model with cubic nonlinearity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3359-3365.	0.9	14
53	Stochastic transitions between in-phase and anti-phase synchronization in coupled map-based neural oscillators. Communications in Nonlinear Science and Numerical Simulation, 2021, 95, 105611.	1.7	14
54	Control of Equilibria for Nonlinear Stochastic Discrete-Time Systems. IEEE Transactions on Automatic Control, 2011, 56, 2162-2166.	3.6	13

#	Article	IF	CITATIONS
55	Stochastic sensitivity of a bistable energy model for visual perception. Indian Journal of Physics, 2017, 91, 57-62.	0.9	13
56	Stochastic Generation and Deformation of Toroidal Oscillations in Neuron Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1850070.	0.7	13
57	Anomalous stochastic dynamics induced by the slip–stick friction and leading to phantom attractors. Physica D: Nonlinear Phenomena, 2019, 399, 153-158.	1.3	13
58	Analysis of regular and chaotic dynamics in a stochastic eco-epidemiological model. Chaos, Solitons and Fractals, 2020, 131, 109549.	2.5	13
59	Multistability and Stochastic Phenomena in the Distributed Brusselator Model. Journal of Computational and Nonlinear Dynamics, 2020, 15, .	0.7	13
60	Analysis of stochastic model for nonlinear volcanic dynamics. Nonlinear Processes in Geophysics, 2015, 22, 197-204.	0.6	12
61	Noise-induced extinction in Bazykin-Berezovskaya population model. European Physical Journal B, 2016, 89, 1.	0.6	12
62	Stochastic sensitivity analysis of chaotic attractors in 2D non-invertible maps. Chaos, Solitons and Fractals, 2019, 126, 78-84.	2.5	12
63	Stochastic spiking-bursting transitions in a neural birhythmic 3D model with the Lukyanov-Shilnikov bifurcation. Chaos, Solitons and Fractals, 2020, 138, 109958.	2.5	12
64	Regular and chaotic regimes in Saltzman model of glacial climate dynamics under the influence of additive and parametric noise. European Physical Journal B, 2014, 87, 1.	0.6	11
65	Analysis of stochastic effects in Kaldor-type business cycle discrete model. Communications in Nonlinear Science and Numerical Simulation, 2016, 36, 446-456.	1.7	11
66	Analysis of Noise-Induced Chaos-Order Transitions in Rulkov Model Near Crisis Bifurcations. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1730014.	0.7	11
67	Chaos can imply periodicity in coupled oscillators. Europhysics Letters, 2017, 117, 40005.	0.7	11
68	Analysis of noise-induced transitions in a generalized logistic model with delay near Neimark–Sacker bifurcation. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 275102.	0.7	11
69	Generation of mixed-mode stochastic oscillations in a hair bundle model. Physical Review E, 2018, 98, .	0.8	11
70	Noise-induced early afterdepolarizations in a three-dimensional cardiac action potential model. Chaos, Solitons and Fractals, 2020, 131, 109515.	2.5	11
71	Analysis of noise-induced phenomena in the nonlinear tumor–immune system. Physica A: Statistical Mechanics and Its Applications, 2020, 549, 123923.	1.2	11
72	Ring of map-based neural oscillators: From order to chaos and back. Chaos, Solitons and Fractals, 2020, 136, 109830.	2.5	11

#	Article	IF	Citations
73	Stabilizing stochastically-forced oscillation generators with hard excitement: a confidence-domain control approach. European Physical Journal B, 2013, 86, 1.	0.6	10
74	Stochastic Sensitivity Analysis and Control for Ecological Model with the Allee Effect. Mathematical Modelling of Natural Phenomena, 2015, 10, 130-140.	0.9	10
75	Approximating Chaotic Attractors by Period-Three Cycles in Discrete Stochastic Systems. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550138.	0.7	10
76	Excitability, mixed-mode oscillations and transition to chaos in a stochastic ice ages model. Physica D: Nonlinear Phenomena, 2017, 343, 28-37.	1.3	10
77	Stochastic sensitivity and variability of glycolytic oscillations in the randomly forced Sel'kov model. European Physical Journal B, 2017, 90, 1.	0.6	10
78	Stochastic sensitivity technique in a persistence analysis of randomly forced population systems with multiple trophic levels. Mathematical Biosciences, 2017, 293, 38-45.	0.9	10
79	Stochastic Sensitivity Analysis of Noise-Induced Extinction in the Ricker Model with Delay and Allee Effect. Bulletin of Mathematical Biology, 2018, 80, 1596-1614.	0.9	10
80	Stochastic sensitivity analysis of the variability of dynamics and transition to chaos in the business cycles model. Communications in Nonlinear Science and Numerical Simulation, 2018, 54, 174-184.	1.7	10
81	Anomalous climate dynamics induced by multiplicative and additive noises. Physical Review E, 2020, 102, 012217.	0.8	10
82	Stochastic Spiking-Bursting Excitability and Transition to Chaos in a Discrete-Time Neuron Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050153.	0.7	10
83	Stochastic sensitivity analysis of noise-induced transitions in a biochemical model with birhythmicity. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 265601.	0.7	10
84	Noise-induced complex oscillatory dynamics in the Zeldovich–Semenov model of a continuous stirred tank reactor. Chaos, 2021, 31, 013105.	1.0	10
85	Stochastic variability and transitions to chaos in a hierarchical three-species population model. Chaos, Solitons and Fractals, 2019, 119, 276-283.	2.5	10
86	Noise-induced transitions and shifts in a climate–vegetation feedback model. Royal Society Open Science, 2018, 5, 171531.	1.1	9
87	Stochastic Sensitivity and Method of Principal Directions in Excitability Analysis of the Hodgkin–Huxley Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1950186.	0.7	9
88	Mixed-mode self-oscillations, stochastic excitability, and coherence resonance in flows of highly concentrated suspensions. Nonlinear Dynamics, 2020, 102, 1837-1848.	2.7	9
89	Stochastic analysis of subcritical amplification of magnetic energy in a turbulent dynamo. Physica A: Statistical Mechanics and Its Applications, 2004, 342, 491-506.	1.2	8
90	Analysis of noise-induced eruptions in a geyser model. European Physical Journal B, 2016, 89, 1.	0.6	8

#	Article	IF	Citations
91	Analysis of Noise-Induced Bifurcations in the Stochastic Tritrophic Population System. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750208.	0.7	8
92	Stochastic sensitivity of systems driven by colored noise. Physica A: Statistical Mechanics and Its Applications, 2018, 505, 729-736.	1.2	8
93	Combined impacts of the Allee effect, delay and stochasticity: Persistence analysis. Communications in Nonlinear Science and Numerical Simulation, 2020, 84, 105148.	1.7	8
94	The effect of time ordering and concurrency in a mathematical model of chemoradiotherapy. Communications in Nonlinear Science and Numerical Simulation, 2021, 96, 105693.	1.7	8
95	Chaotic transients, riddled basins, and stochastic transitions in coupled periodic logistic maps. Chaos, 2021, 31, 053101.	1.0	8
96	Analysis of the Noise-Induced Regimes in Ricker Population Model with Allee Effect via Confidence Domains Technique. BioMed Research International, 2014, 2014, 1-7.	0.9	7
97	Analysis of dynamic regimes in stochastically forced Kaldor model. Chaos, Solitons and Fractals, 2015, 79, 96-104.	2.5	7
98	Stochastic generation of spatial patterns in Brusselator. AIP Conference Proceedings, 2016, , .	0.3	7
99	Stochastic sensitivity analysis of noise-induced order-chaos transitions in discrete-time systems with tangent and crisis bifurcations. Physica A: Statistical Mechanics and Its Applications, 2017, 467, 573-584.	1.2	7
100	Method of stochastic sensitivity synthesis in a stabilisation problem for nonlinear discrete systems with incomplete information. International Journal of Control, 2017, 90, 1652-1663.	1.2	7
101	Stochastic phenomena in pattern formation for distributed nonlinear systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190252.	1.6	7
102	Noise-induced variability of volcanic extrusions. Europhysics Letters, 2016, 116, 40006.	0.7	6
103	Noise-induced bursting in Rulkov model. AIP Conference Proceedings, 2016, , .	0.3	6
104	Attractors of randomly forced logistic model with delay: stochastic sensitivity and noise-induced transitions. Journal of Difference Equations and Applications, 2016, 22, 376-390.	0.7	6
105	Method of confidence domains in the analysis of noise-induced extinction for tritrophic population system. European Physical Journal B, 2017, 90, 1.	0.6	6
106	Noise-induced quasiperiodicity in a ring of unidirectionally-coupled nonidentical maps. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 1571-1577.	0.9	6
107	Tumor Stabilization Induced by T-Cell Recruitment Fluctuations. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050179.	0.7	6
108	Noise-induced shifts in dynamics of multi-rhythmic population SIP-model. Chaos, Solitons and Fractals, 2020, 136, 109816.	2.5	6

#	Article	IF	CITATIONS
109	Stochastic deformations of coupling-induced oscillatory regimes in a system of two logistic maps. Physica D: Nonlinear Phenomena, 2020, 411, 132589.	1.3	6
110	How additive noise forms and shifts phantom attractors in slow–fast systems. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 375008.	0.7	6
111	A Stochastic Hierarchical Population System: Excitement, Extinction and Transition to Chaos. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, .	0.7	6
112	Noise-Induced Oscillations in the flow of Concentrated Suspensions. Prikladnaya Matematika I Mekhanika, 2012, 76, 466-474.	0.4	5
113	Stabilization of stochastic cycles and chaos suppression for nonlinear discrete-time systems. Nonlinear Dynamics, 2012, 67, 2505-2517.	2.7	5
114	How a small noise generates large-amplitude oscillations of volcanic plug and provides high seismicity. European Physical Journal B, 2015, 88, 1.	0.6	5
115	Stochastic variability and noise-induced generation of chaos in a climate feedback system including the carbon dioxide dynamics. Europhysics Letters, 2016, 115, 40009.	0.7	5
116	Noise-induced chaos in non-linear dynamics of El Niños. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2922-2926.	0.9	5
117	Noise-induced variability of nonlinear dynamics in 3D model of enzyme kinetics. Communications in Nonlinear Science and Numerical Simulation, 2020, 90, 105351.	1.7	5
118	Canard oscillations in the randomly forced suspension flows. Chaos, 2021, 31, 033129.	1.0	5
119	Stochastic transformations of multi-rhythmic dynamics and order–chaos transitions in a discrete 2D model. Chaos, 2021, 31, 063121.	1.0	5
120	Analysis of Stochastic Generation and Shifts of Phantom Attractors in a Climate–Vegetation Dynamical Model. Mathematics, 2021, 9, 1329.	1.1	5
121	Stochastic variability of regular and chaotic dynamics in 2D metapopulation model. Chaos, Solitons and Fractals, 2021, 151, 111270.	2.5	5
122	Stochastic Bifurcations, Chaos and Phantom Attractors in the Langford System with Tori. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2030051.	0.7	5
123	Stochastic generation and shifts of phantom attractors in the 2D Rulkov model. Chaos, Solitons and Fractals, 2022, 159, 112111.	2.5	5
124	On the theory of oscillating flows in complex liquids. Colloid Journal, 2010, 72, 153-157.	0.5	4
125	Attainability analysis in the problem of stochastic equilibria synthesis for nonlinear discrete systems. International Journal of Applied Mathematics and Computer Science, 2013, 23, 5-16.	1.5	4
126	On the Stochastic Sensitivity and Noise-Induced Transitions of a Kaldor-Type Business Cycle Model. Computational Economics, 2018, 51, 699-718.	1.5	4

#	Article	IF	Citations
127	Stochastic sensitivity synthesis in nonlinear systems with incomplete information. Journal of the Franklin Institute, 2020, 357, 5187-5198.	1.9	4
128	Modality analysis of patterns in reaction-diffusion systems with random perturbations. Izvestiya Instituta Matematiki I Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2019, 53, 73-82.	0.2	4
129	The role of noise in the tumor dynamics under chemotherapy treatment. European Physical Journal Plus, 2021, 136, 1.	1.2	4
130	How noise can generate calcium spike-type oscillations in deterministic equilibrium modes. Physical Review E, 2022, 105, .	0.8	4
131	EXPONENTIAL MEAN SQUARE STABILITY OF STOCHASTICALLY FORCED INVARIANT MANIFOLDS FOR NONLINEAR SDEs. Stochastics and Dynamics, 2007, 07, 389-401.	0.6	3
132	On stochastic sensitivity control in discrete systems. Automation and Remote Control, 2010, 71, 1833-1848.	0.4	3
133	Noise-induced generation of saw-tooth type transitions between climate attractors and stochastic excitability of paleoclimate. European Physical Journal B, 2015, 88, 1.	0.6	3
134	Analysis of stochastic phenomena in 2D Hindmarsh-Rose neuron model. AIP Conference Proceedings, 2016, , .	0.3	3
135	Stochastic dynamics and chaos in the 3D Hindmarsh-Rose model. AIP Conference Proceedings, 2016, , .	0.3	3
136	Stochastic Sensitivity Analysis and Noise-Induced Chaos in 2D Logistic-Type Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650053.	0.7	3
137	Comment on: Cyclic extrusion of a lava dome based on a stick-slip mechanism, by Costa et al. (2012). Earth and Planetary Science Letters, 2017, 459, 417-419.	1.8	3
138	Analysis of stochastic oscillations in the two-dimensional Rulkov model. AIP Conference Proceedings, 2017, , .	0.3	3
139	Variability in the noise-induced modes of climate dynamics. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126411.	0.9	3
140	Modeling and analysis of nonlinear tumorâ€immune interaction under chemotherapy and radiotherapy. Mathematical Methods in the Applied Sciences, 2022, 45, 7983-7991.	1.2	3
141	Stochastic Generation of Bursting Oscillations in the Three-dimensional Hindmarsh–Rose Model. Journal of Siberian Federal University - Mathematics and Physics, 2016, 9, 79-69.	0.2	3
142	Analysis of additive and parametric noise effects on Morris - Lecar neuron model. Computer Research and Modeling, 2017, 9, 449-468.	0.2	3
143	Noise-induced intermittency and transition to chaos in the neuron Rulkov model. Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki, 2016, 26, 453-462.	0.0	3
144	Stochastic sensitivity of Turing patterns: methods and applications to the analysis of noise-induced transitions. Chaos, Solitons and Fractals, 2021, 153, 111491.	2.5	3

#	Article	IF	CITATIONS
145	Coloured-noise-induced transport in a model of the thermochemical reactor. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200313.	1.6	3
146	Slow–fast oscillatory dynamics and phantom attractors in stochastic modeling of biochemical reactions. Chaos, 2022, 32, 033126.	1.0	3
147	Analysis of stochastic dynamics in a multistable logistic-type epidemiological model. European Physical Journal: Special Topics, 2022, 231, 3563-3575.	1.2	3
148	Exponential mean square stability of stochastically forced 2-torus. Nonlinearity, 2004, 17, 729-742.	0.6	2
149	Control of Stochastically Perturbed Self-Oscillations. Automation and Remote Control, 2005, 66, 944-952.	0.4	2
150	Mean square stabilisation of complex oscillatory regimes in nonlinear stochastic systems. International Journal of Control, 2016, 89, 793-800.	1.2	2
151	Noise-induced quasi-periodic oscillations in Hindmarsh-Rose neuron model. AIP Conference Proceedings, 2017, , .	0.3	2
152	Noiseâ€induced transformations in corporate dynamics of coupled chaotic oscillators. Mathematical Methods in the Applied Sciences, 2020, 44, 12067.	1.2	2
153	Method of optimum linear estimation for determining dynamic characteristics of measuring devices. Measurement Techniques, 1991, 34, 1091-1096.	0.2	1
154	Discrete-time observers with random noises in dynamic block. IEEE Transactions on Automatic Control, 1995, 40, 165-169.	3.6	1
155	Optimal controllers not satisfying the separation theorem. Cybernetics and Systems Analysis, 2000, 36, 426-436.	0.4	1
156	STOCHASTIC BIFURCATIONS FOR RANDOM FORCED OSCILLATIONS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 213-217.	0.4	1
157	Stabilization of stochastically perturbed nonlinear oscillations. Automation and Remote Control, 2007, 68, 1871-1880.	0.4	1
158	Solidification dynamics under random external-temperature fluctuations. Russian Metallurgy (Metally), 2013, 2013, 575-579.	0.1	1
159	Controlling the Stochastic Sensitivity in Nonlinear Discrete-Time Systems with Incomplete Information. Discrete Dynamics in Nature and Society, 2015, 2015, 1-5.	0.5	1
160	EXCITABILITY AND COMPLEX MIXED-MODE OSCILLATIONS IN STOCHASTIC BUSINESS CYCLE MODEL. International Journal of Modeling, Simulation, and Scientific Computing, 2016, 19, 1550027.	0.9	1
161	Analysis of stochastic phenomena in Ricker-type population model with delay. AIP Conference Proceedings, 2017, , .	0.3	1
162	Multistability and stochastic phenomena in a randomly forced thermochemical system. IOP Conference Series: Materials Science and Engineering, 2017, 192, 012011.	0.3	1

#	Article	IF	CITATIONS
163	Analysis of dynamics in the distributed model of glycolysis. AIP Conference Proceedings, 2018, , .	0.3	1
164	Stochastic Control in the Problem of Preventing Ecological Catastrophes. IFAC-PapersOnLine, 2018, 51, 540-544.	0.5	1
165	Analysis of spatiotemporal self-organization in stochastic population model. AIP Conference Proceedings, 2018, , .	0.3	1
166	Stochastic oscillations near the "blue sky catastrophe―bifurcation in neuron model. AIP Conference Proceedings, 2018, , .	0.3	1
167	Strange periodic attractor: Extremely high stochastic sensitivity of a parametrically modulated system. Europhysics Letters, 2018, 123, 40001.	0.7	1
168	Stochastic oscillations in a neuron model with two-dimensional map. AIP Conference Proceedings, 2019, , .	0.3	1
169	Analysis of stochastic transitions in the distributed model with diffusion. AIP Conference Proceedings, 2019, , .	0.3	1
170	Stochastic Sensitivity Analysis of Noise-Induced Phenomena in Discrete Systems. World Scientific Series on Nonlinear Science, Series B, 2021, , 173-192.	0.2	1
171	Stochastic sensitivity analysis of stationary patterns in spatially extended systems. Mathematical Methods in the Applied Sciences, 2021, 44, 12194-12202.	1.2	1
172	Stochastic Bifurcations and Excitement in the ZS-Model of a Thermochemical Reaction. Mathematics, 2022, 10, 960.	1.1	1
173	Stability and stabilization of autonomous system orbits under stochastic perturbations. Prikladnaya Matematika I Mekhanika, 1992, 56, 855-862.	0.4	0
174	Constructive Technique of Noise Sensitivity Analysis for Regular and Chaotic Nonlinear Systems. AIP Conference Proceedings, 2007, , .	0.3	0
175	Stability of Oscillations for Dynamic Systems Under the Random Parametrical Fluctuations. AIP Conference Proceedings, 2007, , .	0.3	0
176	MEAN SQUARE STABILITY AND STABILIZATION FOR STOCHASTIC NONLINEAR OSCILLATIONS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 148-152.	0.4	0
177	Analysis of stability in quadratic mean of the limit cycles of nonlinear stochastic systems. Automation and Remote Control, 2007, 68, 1801-1812.	0.4	0
178	On controlling stochastic sensitivity of oscillatory systems. Automation and Remote Control, 2013, 74, 932-943.	0.4	0
179	Spectral criterion of stochastic stability for invariant manifolds1. Cybernetics and Systems Analysis, 2013, 49, 69-76.	0.4	0
180	Numerical analysis of noise-induced oscillating bistability in a prey-predator plankton system. , 2013, , .		0

#	Article	lF	CITATIONS
181	Approximation of stochastic attractors for nonlinear SDEs via confidence domains. , 2013, , .		O
182	Chaos-Fractals Theories and Applications. Mathematical Problems in Engineering, 2014, 2014, 1-1.	0.6	0
183	Mean-square Stabilization of Invariant Manifolds for SDEs. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 9985-9990.	0.4	0
184	Stabilization of the stochastically forced equilibria for nonlinear discrete-time systems with incomplete information. AlP Conference Proceedings, 2015 , , .	0.3	0
185	Analysis of stochastically forced quasi-periodic attractors. AIP Conference Proceedings, 2015, , .	0.3	0
186	Numerical analysis of randomly forced glycolitic oscillations. AIP Conference Proceedings, 2015, , .	0.3	0
187	Attainability analysis in stochastic controlled systems. AIP Conference Proceedings, 2015, , .	0.3	0
188	Analysis of stochastic Ricker model in a zone of Neimark-Sacker bifurcation. AIP Conference Proceedings, 2016, , .	0.3	0
189	Modeling and stochastic analysis of dynamic mechanisms of the perception. AIP Conference Proceedings, 2017, , .	0.3	0
190	Analysis of stochastic dynamics of Higgins model. IOP Conference Series: Materials Science and Engineering, 2017, 192, 012022.	0.3	0
191	Analysis of the stochastically forced invariant manifolds of dynamic systems. AIP Conference Proceedings, 2017, , .	0.3	0
192	Analysis of stochastic cycles induced by periodic forcing. AIP Conference Proceedings, 2018, , .	0.3	0
193	Regularization in the Problem of Minimization of Stochastic Sensitivity. IFAC-PapersOnLine, 2018, 51, 606-609.	0.5	0
194	Stochastic excitability in a discrete neural model. AIP Conference Proceedings, 2018, , .	0.3	0
195	Preventing noise-induced ecological shifts: stochastic sensitivity analysis and control. European Physical Journal B, 2019, 92, 1.	0.6	0
196	Stochastic sensitivity analysis of noise-induced oscillations in Adler model. AIP Conference Proceedings, 2019, , .	0.3	0
197	Noise-induced shifts in the ecological model with delay. AIP Conference Proceedings, 2019, , .	0.3	0
198	Stochastic sensitivity analysis of volcanic activity. Mathematical Methods in the Applied Sciences, 2020, 44, 12078.	1.2	0

#	Article	IF	CITATIONS
199	Stochastic generation and suppression of early afterdepolarizations in a threeâ€dimensional model of cardiac action potential. Mathematical Methods in the Applied Sciences, 0, , .	1.2	0
200	Stochastic dynamics in the Li–Rinzel calcium oscillation model. Mathematical Methods in the Applied Sciences, 0, , .	1.2	0
201	Stochastic sensitivity and noise-induced bifurcations of limit cycles. Applied Mathematical Sciences, 0, 7, 1131-1134.	0.0	0
202	Analysis of Spatial Patterns in the Distributed Stochastic Brusselator. Springer Proceedings in Mathematics and Statistics, 2020, , 195-204.	0.1	0
203	Stochastic Deformation of Invariant Tori In Neuron Model. Springer Proceedings in Mathematics and Statistics, 2020, , 213-219.	0.1	0
204	Noise-Induced Transitions for Limit Cycles of Nonlinear Systems. Understanding Complex Systems, 2009, , 455-462.	0.3	0
205	Noise-induced triggering and suppression of EADs in a 3D model of cardiac activity. AIP Conference Proceedings, 2022, , .	0.3	0