Cheng-Xiong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2786051/publications.pdf

Version: 2024-02-01

66315 53190 7,416 83 42 85 citations h-index g-index papers 86 86 86 6881 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of reusable and renewable microporous organic networks for the removal of halogenated contaminants. Journal of Hazardous Materials, 2022, 424, 127485.	6.5	17
2	Solvent regulation and template-free synthesis of \hat{l}^2 -cyclodextrin-based microporous organic network nanosheets for ultrafast and efficient removal of aromatic pollutants. Chemical Engineering Journal, 2022, 435, 134829.	6.6	15
3	Migration study of phenolic endocrine disruptors from pacifiers to saliva simulant by solid phase microextraction with amino-functionalized microporous organic network coated fiber. Journal of Hazardous Materials, 2022, 438, 129505.	6.5	8
4	Fabrication of spherical silica amino-functionalized microporous organic network composites for high performance liquid chromatography. Talanta, 2021, 221, 121570.	2.9	14
5	Engineering of amino microporous organic network on zeolitic imidazolate framework-67 derived nitrogen-doped carbon for efficient magnetic extraction of plant growth regulators. Talanta, 2021, 224, 121876.	2.9	23
6	Covalent coupling fabrication of microporous organic network bonded capillary columns for gas chromatographic separation. Talanta, 2021, 224, 121914.	2.9	14
7	Fabrication of carboxyl functionalized microporous organic network coated stir bar for efficient extraction and analysis of phenylurea herbicides in food and water samples. Journal of Chromatography A, 2021, 1640, 461947.	1.8	14
8	Decoration of Fe3+ on carboxyl microporous organic network to fabricate magnetic porous carbon for efficient adsorption and removal of cationic dyes. Chemical Engineering Journal Advances, 2021, 6, 100092.	2.4	7
9	Application of microporous organic networks in separation science. TrAC - Trends in Analytical Chemistry, 2021, 139, 116268.	5.8	33
10	Fabrication of microporous organic network@silica composite for highâ€performance liquid chromatographic separation of drugs and proteins. Electrophoresis, 2021, 42, 1936-1944.	1.3	6
11	Fabrication of magnetic polydopamine@naphthyl microporous organic network nanosphere for efficient extraction of hydroxylated polycyclic aromatic hydrocarbons and p-nitrophenol from wastewater samples. Journal of Chromatography A, 2021, 1651, 462347.	1.8	14
12	Thiolâ€"Yne Click Postsynthesis of a Sulfonate Group-Enriched Magnetic Microporous Organic Network for Efficient Extraction of Benzimidazole Fungicides. ACS Applied Materials & Diterfaces, 2021, 13, 39905-39914.	4.0	25
13	Tailored amino/hydroxyl bifunctional microporous organic network for efficient stir bar sorptive extraction of parabens and flavors from cosmetic and food samples. Journal of Chromatography A, 2021, 1655, 462521.	1.8	18
14	Fabrication of polyethyleneimine modified magnetic microporous organic network nanosphere for efficient enrichment of non-steroidal anti-inflammatory drugs from wastewater samples prior to HPLC-UV analysis. Talanta, 2021, 233, 122471.	2.9	19
15	Synthesis of carboxyl functionalized microporous organic network for solid phase extraction coupled with high-performance liquid chromatography for the determination of phenols in water samples. Talanta, 2020, 208, 120434.	2.9	33
16	Synthesis of magnetic amino-functionalized microporous organic network composites for magnetic solid phase extraction of endocrine disrupting chemicals from water, beverage bottle and juice samples. Talanta, 2020, 206, 120179.	2.9	66
17	Facile synthesis of dual-functionalized microporous organic network for efficient removal of cationic dyes from water. Microporous and Mesoporous Materials, 2020, 296, 110013.	2.2	24
18	Porous Organic Nanocages CC3 and CC3–OH for Chiral Gas Chromatography. ACS Applied Nano Materials, 2020, 3, 479-485.	2.4	23

#	Article	IF	Citations
19	Thiol-yne Click Post-Modification for the Synthesis of Chiral Microporous Organic Networks for Chiral Gas Chromatography. ACS Applied Materials & Samp; Interfaces, 2020, 12, 4954-4961.	4.0	36
20	pH-Driven Targeting Nanoprobe with Dual-Responsive Drug Release for Persistent Luminescence lmaging and Chemotherapy of Tumor. Analytical Chemistry, 2020, 92, 1179-1188.	3.2	39
21	Synthesis of silica amino-functionalized microporous organic network composites for efficient on-line solid phase extraction of trace phenols from water. Journal of Chromatography A, 2020, 1616, 460791.	1.8	6
22	Dendrimer grafted persistent luminescent nanoplatform for aptamer guided tumor imaging and acid-responsive drug delivery. Talanta, 2020, 219, 121209.	2.9	44
23	A knot-linker planarity control strategy for constructing highly crystalline cationic covalent organic frameworks: decoding the effect of crystallinity on adsorption performance. Journal of Materials Chemistry A, 2020, 8, 12657-12664.	5.2	34
24	Irreversible Amideâ€Linked Covalent Organic Framework for Selective and Ultrafast Gold Recovery. Angewandte Chemie, 2020, 132, 17760-17766.	1.6	18
25	Irreversible Amideâ€Linked Covalent Organic Framework for Selective and Ultrafast Gold Recovery. Angewandte Chemie - International Edition, 2020, 59, 17607-17613.	7.2	174
26	Cationic Surfactantâ€Modified Covalent Organic Frameworks for Nitrate Removal from Aqueous Solution: Synthesis by Freeâ€Radical Polymerization. ChemPlusChem, 2020, 85, 828-831.	1.3	6
27	Polysiloxane assisted fabrication of chiral crystal sponge coated capillary column for chiral gas chromatographic separation. Journal of Chromatography A, 2019, 1608, 460420.	1.8	11
28	Carboxyl-Functionalized Covalent Organic Frameworks for the Adsorption and Removal of Triphenylmethane Dyes. ACS Applied Nano Materials, 2019, 2, 7290-7298.	2.4	97
29	Fabrication of a covalent organic framework and its gold nanoparticle hybrids as stable mimetic peroxidase for sensitive and selective colorimetric detection of mercury in water samples. Talanta, 2019, 204, 224-228.	2.9	66
30	Facile synthesis of hydroxyl enriched microporous organic networks for enhanced adsorption and removal of tetrabromobisphenol A from aqueous solution. Chemical Engineering Journal, 2019, 373, 606-615.	6.6	38
31	In situ fabrication of microporous organic network coated capillary column for high resolution gas chromatographic separation of hydrocarbons. Electrophoresis, 2019, 40, 2186-2192.	1.3	7
32	A multifunctional persistent luminescent nanoprobe for imaging guided dual-stimulus responsive and triple-synergistic therapy of drug resistant tumor cells. Chemical Communications, 2019, 55, 5283-5286.	2.2	21
33	Cationic Covalent Organic Nanosheets for Rapid and Selective Capture of Perrhenate: An Analogue of Radioactive Pertechnetate from Aqueous Solution. Environmental Science & En	4.6	160
34	Room-temperature synthesis of microporous organic network for efficient adsorption and removal of tetrabromobisphenol A from aqueous solution. Chemical Engineering Journal, 2019, 368, 589-597.	6.6	37
35	Core–Shell Magnetic Amino-Functionalized Microporous Organic Network Nanospheres for the Removal of Tetrabromobisphenol A from Aqueous Solution. ACS Applied Nano Materials, 2019, 2, 1232-1241.	2.4	37
36	Thiol–Ene Click Synthesis of Phenylboronic Acid-Functionalized Covalent Organic Framework for Selective Catechol Removal from Aqueous Medium. ACS Applied Materials & Diterfaces, 2019, 11, 46219-46225.	4.0	46

#	Article	lF	CITATIONS
37	Zeolitic imidazolate framework-8 for selective extraction of a highly active anti-oxidant flavonoid from Caragana Jubata. Journal of Chromatography A, 2018, 1544, 8-15.	1.8	21
38	Biomimetic Persistent Luminescent Nanoplatform for Autofluorescence-Free Metastasis Tracking and Chemophotodynamic Therapy. Analytical Chemistry, 2018, 90, 4188-4195.	3.2	46
39	Advances in covalent organic frameworks in separation science. Journal of Chromatography A, 2018, 1542, 1-18.	1.8	213
40	Self-quenched gold nanoclusters for turn-on fluorescence imaging of intracellular glutathione. Nano Research, 2018, 11, 2488-2497.	5.8	24
41	Metal-organic framework-801 for efficient removal of fluoride from water. Microporous and Mesoporous Materials, 2018, 259, 163-170.	2.2	105
42	Covalent Organic Frameworks with Chirality Enriched by Biomolecules for Efficient Chiral Separation. Angewandte Chemie, 2018, 130, 16996-17001.	1.6	20
43	Covalent Organic Frameworks with Chirality Enriched by Biomolecules for Efficient Chiral Separation. Angewandte Chemie - International Edition, 2018, 57, 16754-16759.	7.2	200
44	Post-synthetic modification of metal–organic frameworks for chiral gas chromatography. Journal of Materials Chemistry A, 2018, 6, 17861-17866.	5.2	105
45	Exploring fluorescent covalent organic frameworks for selective sensing of Fe3+. Science China Chemistry, 2018, 61, 1470-1474.	4.2	54
46	Controllable preparation of core–shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution. Chemical Communications, 2017, 53, 2511-2514.	2.2	287
47	A Dualâ€Functional Persistently Luminescent Nanocomposite Enables Engineering of Mesenchymal Stem Cells for Homing and Gene Therapy of Glioblastoma. Advanced Functional Materials, 2017, 27, 1604992.	7.8	64
48	Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy. Nature Communications, 2017, 8, 14998.	5.8	204
49	Liposome-Coated Persistent Luminescence Nanoparticles as Luminescence Trackable Drug Carrier for Chemotherapy. Analytical Chemistry, 2017, 89, 6936-6939.	3.2	69
50	Inâ€Situ Growth of Covalent Organic Framework Shells on Silica Microspheres for Application in Liquid Chromatography. ChemPlusChem, 2017, 82, 933-938.	1.3	79
51	Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography. Journal of Chromatography A, 2017, 1479, 137-144.	1.8	74
52	A versatile covalent organic framework-based platform for sensing biomolecules. Chemical Communications, 2017, 53, 11469-11471.	2.2	148
53	γ-Cyclodextrin metal–organic framework for efficient separation of chiral aromatic alcohols. RSC Advances, 2017, 7, 36297-36301.	1.7	39
54	A Chiral Metal-Organic Material that Enables Enantiomeric Identification and Purification. CheM, 2017, 3, 281-289.	5.8	97

#	Article	IF	Citations
55	Intracellular Messenger RNA Triggered Catalytic Hairpin Assembly for Fluorescence Imaging Guided Photothermal Therapy. Analytical Chemistry, 2017, 89, 7277-7281.	3.2	51
56	High-Crystallinity Covalent Organic Framework with Dual Fluorescence Emissions and Its Ratiometric Sensing Application. ACS Applied Materials & Sensing Application. ACS Applied Materials & Sensing Application.	4.0	224
57	Conjugation of a photosensitizer to near infrared light renewable persistent luminescence nanoparticles for photodynamic therapy. Chemical Communications, 2016, 52, 13303-13306.	2.2	72
58	Activatable Multifunctional Persistent Luminescence Nanoparticle/Copper Sulfide Nanoprobe for in Vivo Luminescence Imaging-Guided Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32667-32674.	4.0	91
59	Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nature Communications, 2016, 7, 12104.	5.8	375
60	Penetrating Peptide-Bioconjugated Persistent Nanophosphors for Long-Term Tracking of Adipose-Derived Stem Cells with Superior Signal-to-Noise Ratio. Analytical Chemistry, 2016, 88, 4114-4121.	3.2	78
61	Synthesis of covalently bonded boron-dipyrromethene–diarylethene for building a stable photosensitizer with photo-controlled reversibility. Chemical Communications, 2016, 52, 5470-5473.	2.2	21
62	Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation. Chemical Communications, 2015, 51, 12254-12257.	2.2	232
63	Post-synthetic modification of MIL-101(Cr) with pyridine for high-performance liquid chromatographic separation of tocopherols. Talanta, 2015, 137, 136-142.	2.9	52
64	Postsynthetic ligand exchange for the synthesis of benzotriazole-containing zeolitic imidazolate framework. Chemical Communications, 2015, 51, 6540-6543.	2.2	34
65	An in situ growth approach to the fabrication of zeolite imidazolate framework-90 bonded capillary column for gas chromatography separation. Analyst, The, 2015, 140, 3107-3112.	1.7	30
66	Chiral metal–organic framework coated quartz crystal microbalance for chiral discrimination. RSC Advances, 2015, 5, 30577-30582.	1.7	23
67	Fabrication of aluminum terephthalate metal-organic framework incorporated polymer monolith for the microextraction of non-steroidal anti-inflammatory drugs in water and urine samples. Journal of Chromatography A, 2015, 1393, 1-7.	1.8	74
68	Ratiometric Fluorescent Detection of Phosphate in Aqueous Solution Based on Near Infrared Fluorescent Silver Nanoclusters/Metal–Organic Shell Composite. Analytical Chemistry, 2015, 87, 11455-11459.	3.2	102
69	Fabrication of metal–organic framework MIL-88B films on stainless steel fibers for solid-phase microextraction of polychlorinated biphenyls. Journal of Chromatography A, 2014, 1334, 1-8.	1.8	153
70	Metal–organic framework MIL-100(Fe) for artificial kidney application. RSC Advances, 2014, 4, 40824-40827.	1.7	33
71	Room temperature fabrication of post-modified zeolitic imidazolate framework-90 as stationary phase for open-tubular capillary electrochromatography. Journal of Chromatography A, 2014, 1343, 188-194.	1.8	58
72	Metal–organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples. Journal of Chromatography A, 2014, 1357, 165-171.	1.8	140

#	Article	IF	CITATIONS
73	Incorporation of metal–organic framework UiO-66 into porous polymer monoliths to enhance the liquid chromatographic separation of small molecules. Chemical Communications, 2013, 49, 7162.	2.2	118
74	Zeolitic Imidazolate Framework-8 for Fast Adsorption and Removal of Benzotriazoles from Aqueous Solution. ACS Applied Materials & Solution.	4.0	243
75	Fluorescent Metal–Organic Framework MIL-53(Al) for Highly Selective and Sensitive Detection of Fe ³⁺ in Aqueous Solution. Analytical Chemistry, 2013, 85, 7441-7446.	3.2	469
76	Zeolite imidazolate framework-8 as sorbent for on-line solid-phase extraction coupled with high-performance liquid chromatography for the determination of tetracyclines in water and milk samples. Journal of Chromatography A, 2013, 1304, 28-33.	1.8	177
77	Fabrication of ZIFâ€8@SiO ₂ Core–Shell Microspheres as the Stationary Phase for Highâ€Performance Liquid Chromatography. Chemistry - A European Journal, 2013, 19, 13484-13491.	1.7	170
78	Metal–organic frameworks for reverse-phase high-performance liquid chromatography. Analyst, The, 2012, 137, 816-818.	1.7	92
79	Selective adsorption and extraction of C70 and higher fullerenes on a reusable metal–organic framework MIL-101(Cr). Journal of Materials Chemistry, 2012, 22, 17833.	6.7	43
80	High-performance liquid chromatographic separation of position isomers using metal–organic framework MIL-53(Al) as the stationary phase. Analyst, The, 2012, 137, 133-139.	1.7	121
81	Metal–Organic Frameworks for Analytical Chemistry: From Sample Collection to Chromatographic Separation. Accounts of Chemical Research, 2012, 45, 734-745.	7.6	610
82	Metal–Organic Framework MIL-101(Cr) for High-Performance Liquid Chromatographic Separation of Substituted Aromatics. Analytical Chemistry, 2011, 83, 7144-7150.	3.2	307
83	Highâ€Performance Separation of Fullerenes on Metal–Organic Framework MILâ€101(Cr). Chemistry - A European Journal, 2011, 17, 11734-11737.	1.7	112