Craig H Mermel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2785632/publications.pdf

Version: 2024-02-01

59 papers

45,348 citations

45 h-index 58 g-index

60 all docs 60 does citations

60 times ranked

60557 citing authors

#	Article	IF	CITATIONS
1	Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008, 455, 1061-1068.	27.8	6,879
2	Integrated genomic analyses of ovarian carcinoma. Nature, 2011, 474, 609-615.	27.8	6,541
3	Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 2013, 499, 214-218.	27.8	4,761
4	Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. New England Journal of Medicine, 2014, 371, 2488-2498.	27.0	3,474
5	The landscape of somatic copy-number alteration across human cancers. Nature, 2010, 463, 899-905.	27.8	3,331
6	Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462, 108-112.	27.8	2,707
7	Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 2014, 505, 495-501.	27.8	2,586
8	GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biology, 2011, 12, R41.	8.8	2,546
9	Pan-cancer patterns of somatic copy number alteration. Nature Genetics, 2013, 45, 1134-1140.	21.4	1,616
10	<i>EML4-ALK</i> Fusion Gene and Efficacy of an ALK Kinase Inhibitor in Lung Cancer. Clinical Cancer Research, 2008, 14, 4275-4283.	7.0	916
11	SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nature Genetics, 2009, 41, 1238-1242.	21.4	862
12	Lin28 promotes transformation and is associated with advanced human malignancies. Nature Genetics, 2009, 41, 843-848.	21.4	742
13	Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nature Genetics, 2010, 42, 715-721.	21.4	642
14	CDK8 is a colorectal cancer oncogene that regulates \hat{I}^2 -catenin activity. Nature, 2008, 455, 547-551.	27.8	594
15	The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature, 2011, 471, 513-517.	27.8	506
16	Highly parallel identification of essential genes in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20380-20385.	7.1	499
17	RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nature Communications, 2015, 6, 6377.	12.8	498
18	<i>PTEN</i> Loss Contributes to Erlotinib Resistance in EGFR-Mutant Lung Cancer by Activation of Akt and EGFR. Cancer Research, 2009, 69, 3256-3261.	0.9	480

#	Article	IF	CITATIONS
19	ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3788-3793.	7.1	472
20	Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. Journal of Clinical Investigation, 2013, 123, 517-25.	8.2	462
21	Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12372-12377.	7.1	383
22	Inhibitor-Sensitive FGFR1 Amplification in Human Non-Small Cell Lung Cancer. PLoS ONE, 2011, 6, e20351.	2.5	338
23	Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood, 2014, 123, e123-e133.	1.4	337
24	Integrated Genome-Wide DNA Copy Number and Expression Analysis Identifies Distinct Mechanisms of Primary Chemoresistance in Ovarian Carcinomas. Clinical Cancer Research, 2009, 15, 1417-1427.	7.0	266
25	Clinical Acquired Resistance to RAF Inhibitor Combinations in <i>BRAF</i> hi>-Mutant Colorectal Cancer through MAPK Pathway Alterations. Cancer Discovery, 2015, 5, 358-367.	9.4	265
26	Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. Npj Digital Medicine, 2019, 2, 48.	10.9	244
27	Predicting drug susceptibility of non–small cell lung cancers based on genetic lesions. Journal of Clinical Investigation, 2009, 119, 1727-1740.	8.2	230
28	Integrative Analysis Reveals an Outcome-Associated and Targetable Pattern of p53 and Cell Cycle Deregulation in Diffuse Large B Cell Lymphoma. Cancer Cell, 2012, 22, 359-372.	16.8	179
29	An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis. Nature Medicine, 2019, 25, 1453-1457.	30.7	179
30	Recurrent Hemizygous Deletions in Cancers May Optimize Proliferative Potential. Science, 2012, 337, 104-109.	12.6	172
31	Deep learning-based survival prediction for multiple cancer types using histopathology images. PLoS ONE, 2020, 15, e0233678.	2.5	143
32	Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nature Medicine, 2022, 28, 154-163.	30.7	143
33	Development and Validation of a Deep Learning Algorithm for Gleason Grading of Prostate Cancer From Biopsy Specimens. JAMA Oncology, 2020, 6, 1372.	7.1	119
34	Artificial intelligence in digital breast pathology: Techniques and applications. Breast, 2020, 49, 267-273.	2.2	117
35	ERG rearrangement is specific to prostate cancer and does not occur in any other common tumor. Modern Pathology, 2010, 23, 1061-1067.	5.5	114
36	Interpretable survival prediction for colorectal cancer using deep learning. Npj Digital Medicine, 2021, 4, 71.	10.9	95

3

#	Article	IF	Citations
37	Similar image search for histopathology: SMILY. Npj Digital Medicine, 2019, 2, 56.	10.9	91
38	Amplification of chromosomal segment $4q12$ in non-small cell lung cancer. Cancer Biology and Therapy, 2009, 8, 2042-2050.	3.4	78
39	Computational Pathology: An Emerging Definition. Archives of Pathology and Laboratory Medicine, 2014, 138, 1133-1138.	2.5	78
40	Systematic Interrogation of 3q26 Identifies <i>TLOC1</i> and <i>SKIL</i> as Cancer Drivers. Cancer Discovery, 2013, 3, 1044-1057.	9.4	71
41	microRNA Expression during Trophectoderm Specification. PLoS ONE, 2009, 4, e6143.	2.5	71
42	Identification of and Molecular Basis for SIRT6 Loss-of-Function Point Mutations in Cancer. Cell Reports, 2015, 13, 479-488.	6.4	64
43	Whole-Slide Image Focus Quality: Automatic Assessment and Impact on Al Cancer Detection. Journal of Pathology Informatics, 2019, 10, 39.	1.7	58
44	Current and future applications of artificial intelligence in pathology: a clinical perspective. Journal of Clinical Pathology, 2021, 74, 409-414.	2.0	57
45	Evaluation of the Use of Combined Artificial Intelligence and Pathologist Assessment to Review and Grade Prostate Biopsies. JAMA Network Open, 2020, 3, e2023267.	5.9	56
46	Determining breast cancer biomarker status and associated morphological features using deep learning. Communications Medicine, 2021, 1, .	4.2	53
47	Src family kinases are important negative regulators of G-CSF-dependent granulopoiesis. Blood, 2006, 108, 2562-2568.	1.4	44
48	Detection of Preanalytic Laboratory Testing Errors Using a Statistically Guided Protocol. American Journal of Clinical Pathology, 2012, 138, 406-413.	0.7	31
49	Closing the translation gap: Al applications in digital pathology. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188452.	7.4	31
50	Predicting prostate cancer specific-mortality with artificial intelligence-based Gleason grading. Communications Medicine, 2021, 1, .	4.2	24
51	Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using histopathology images. Scientific Reports, 2021, 11, 16605.	3.3	21
52	Evaluation of artificial intelligence on a reference standard based on subjective interpretation. The Lancet Digital Health, 2021, 3, e693-e695.	12.3	21
53	The 2013 symposium on pathology data integration and clinical decision support and the current state of field. Journal of Pathology Informatics, 2014, 5, 2.	1.7	14
54	How surgical residents use social media. Surgery, 2011, 150, 5-6.	1.9	11

#	Article	IF	CITATIONS
55	Developing Algorithms to Discover Novel Cancer Genes: A look at the challenges and approaches. IEEE Signal Processing Magazine, 2012, 29, 89-97.	5.6	7
56	Reply: â€~The importance of study design in the application of artificial intelligence methods in medicine'. Npj Digital Medicine, 2019, 2, 100.	10.9	2
57	Clonal Hematopoiesis with Somatic Mutations Is a Common, Age-Related Condition Associated with Adverse Outcomes. Blood, 2014, 124, 840-840.	1.4	1
58	A Structural Basis for p53-Deficiency, Deregulated Cell Cycle and Unfavorable Outcome in Diffuse Large B-Cell Lymphoma. Blood, 2012, 120, 1534-1534.	1.4	0
59	Abstract SY25-03: Haploinsufficiency in cancer: When half simply isn't good enough , 2013, , .		0