Giovanna Pitarresi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2785414/publications.pdf

Version: 2024-02-01

186265 289244 1,948 75 28 40 citations h-index g-index papers 75 75 75 2363 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Composite Hydrogels of Alkyl Functionalized Gellan Gum Derivative and Hydroxyapatite/Tricalcium Phosphate Nanoparticles as Injectable Scaffolds for bone Regeneration. Macromolecular Bioscience, 2022, 22, e2100290.	4.1	5
2	Bioactive Scaffolds Based on Amine-Functionalized Gellan Gum for the Osteogenic Differentiation of Gingival Mesenchymal Stem Cells. ACS Applied Polymer Materials, 2022, 4, 1805-1815.	4.4	1
3	Correlating Rheological Properties of a Gellan Gum-Based Bioink: A Study of the Impact of Cell Density. Polymers, 2022, 14, 1844.	4.5	6
4	Photothermal nanofibrillar membrane based on hyaluronic acid and graphene oxide to treat Staphylococcus aureus and Pseudomonas aeruginosa infected wounds. International Journal of Biological Macromolecules, 2022, 214, 470-479.	7.5	15
5	Fabrication of silver nanoparticles by a diethylene triamine-hyaluronic acid derivative and use as antibacterial coating. Carbohydrate Polymers, 2022, 295, 119861.	10.2	10
6	Hyaluronan alkyl derivatives-based electrospun membranes for potential guided bone regeneration: Fabrication, characterization and in vitro osteoinductive properties. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111438.	5.0	14
7	An asymmetric electrospun membrane for the controlled release of ciprofloxacin and FGF-2: Evaluation of antimicrobial and chemoattractant properties. Materials Science and Engineering C, 2021, 123, 112001.	7.3	18
8	Physicochemical and Rheological Characterization of Different Low Molecular Weight Gellan Gum Products and Derived Ionotropic Crosslinked Hydrogels. Gels, 2021, 7, 62.	4.5	20
9	Inulin-Based Polymeric Micelles Functionalized with Ocular Permeation Enhancers: Improvement of Dexamethasone Permeation/Penetration through Bovine Corneas. Pharmaceutics, 2021, 13, 1431.	4.5	10
10	Ciprofloxacin releasing gellan gum/polydopamine based hydrogels with near infrared activated photothermal properties. International Journal of Pharmaceutics, 2021, 610, 121231.	5 . 2	14
11	Gellan gum-based delivery systems of therapeutic agents and cells. Carbohydrate Polymers, 2020, 229, 115430.	10.2	89
12	Hyaluronic acid based nanohydrogels fabricated by microfluidics for the potential targeted release of Imatinib: Characterization and preliminary evaluation of the antiangiogenic effect. International Journal of Pharmaceutics, 2020, 573, 118851.	5.2	8
13	New gellan gum-graft-poly(d,l-lactide-co-glycolide) copolymers as promising bioinks: Synthesis and characterization. International Journal of Biological Macromolecules, 2020, 162, 1653-1667.	7.5	13
14	A hyaluronic acid/cyclodextrin based injectable hydrogel for local doxorubicin delivery to solid tumors. International Journal of Pharmaceutics, 2020, 589, 119879.	5.2	39
15	Production and physicochemical characterization of a new amine derivative of gellan gum and rheological study of derived hydrogels. Carbohydrate Polymers, 2020, 236, 116033.	10.2	24
16	Blend scaffolds with polyaspartamide/polyester structure fabricated via TIPS and their RGDC functionalization to promote osteoblast adhesion and proliferation. Journal of Biomedical Materials Research - Part A, 2019, 107, 2726-2735.	4.0	2
17	Production of a Double-Layer Scaffold for the "On-Demand―Release of Fibroblast-like Limbal Stem Cells. ACS Applied Materials & Interfaces, 2019, 11, 22206-22217.	8.0	6
18	Chemical stiffening of constructs between polymeric microparticles based on a hyaluronic acid derivative and mesenchymal stem cells: rheological and <i>in vitro</i> viability studies. Polymer International, 2019, 68, 394-399.	3.1	1

#	Article	IF	Citations
19	Polyaspartamide based hydrogel with cell recruitment properties for the local administration of hydrophobic anticancer drugs. Reactive and Functional Polymers, 2019, 138, 9-17.	4.1	11
20	Mucoadhesive PEGylated inulin-based self-assembling nanoparticles: InÂvitro and exÂvivo transcorneal permeation enhancement of corticosteroids. Journal of Drug Delivery Science and Technology, 2019, 49, 195-208.	3.0	25
21	Synthesis and evaluation of thermo-rheological behaviour and ionotropic crosslinking of new gellan gum-alkyl derivatives. Carbohydrate Polymers, 2018, 185, 73-84.	10.2	27
22	Imatinib-Loaded Micelles of Hyaluronic Acid Derivatives for Potential Treatment of Neovascular Ocular Diseases. Molecular Pharmaceutics, 2018, 15, 5031-5045.	4.6	32
23	Multifibrillar bundles of a self-assembling hyaluronic acid derivative obtained through a microfluidic technique for aortic smooth muscle cell orientation and differentiation. Biomaterials Science, 2018, 6, 2518-2526.	5.4	9
24	Hyaluronic acid and \hat{l}_{\pm} -elastin based hydrogel for three dimensional culture of vascular endothelial cells. Journal of Drug Delivery Science and Technology, 2018, 46, 28-33.	3.0	16
25	Spray dried hyaluronic acid microparticles for adhesion controlled aggregation and potential stimulation of stem cells. International Journal of Pharmaceutics, 2017, 519, 332-342.	5.2	12
26	Hyaluronic acid and beta cyclodextrins films for the release of corneal epithelial cells and dexamethasone. Carbohydrate Polymers, 2017, 166, 281-290.	10.2	39
27	Synthesis, mechanical and thermal rheological properties of new gellan gum derivatives. International Journal of Biological Macromolecules, 2017, 98, 646-653.	7.5	40
28	Double-Network-Structured Graphene Oxide-Containing Nanogels as Photothermal Agents for the Treatment of Colorectal Cancer. Biomacromolecules, 2017, 18, 1010-1018.	5.4	61
29	A methacrylic hyaluronic acid derivative for potential application in oral treatment of celiac disease. Drug Development and Industrial Pharmacy, 2017, 43, 1480-1488.	2.0	2
30	Novel inulin-based mucoadhesive micelles loaded with corticosteroids as potential transcorneal permeation enhancers. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 385-399.	4.3	46
31	Photocrosslinkable polyaspartamide/polylactide copolymer and its porous scaffolds for chondrocytes. Materials Science and Engineering C, 2017, 76, 794-801.	7.3	8
32	Microfluidic Fabrication of Physically Assembled Nanogels and Micrometric Fibers by Using a Hyaluronic Acid Derivative. Macromolecular Materials and Engineering, 2017, 302, 1700265.	3.6	10
33	Nanoparticles of a polyaspartamide-based brush copolymer for modified release of sorafenib: In vitro and in vivo evaluation. Journal of Controlled Release, 2017, 266, 47-56.	9.9	26
34	Hyaluronic Acidâ€Based Micelles as Ocular Platform to Modulate the Loading, Release, and Corneal Permeation of Corticosteroids. Macromolecular Bioscience, 2017, 17, 1700261.	4.1	35
35	Microfluidic production of hyaluronic acid derivative microfibers to control drug release. Materials Letters, 2016, 182, 309-313.	2.6	19
36	Hyaluronic Acid Derivative with Improved Versatility for Processing and Biological Functionalization. Macromolecular Bioscience, 2016, 16, 1485-1496.	4.1	20

#	Article	IF	Citations
37	Modulation of physical and biological properties of a composite PLLA and polyaspartamide derivative obtained via thermally induced phase separation (TIPS) technique. Materials Science and Engineering C, 2016, 67, 561-569.	7.3	16
38	Uptake of silica covered Quantum Dots into living cells: Long term vitality and morphology study on hyaluronic acid biomaterials. Materials Science and Engineering C, 2016, 67, 231-236.	7.3	8
39	A New Hyaluronic Acid Derivative Obtained from Atom Transfer Radical Polymerization as a siRNA Vector for CD44 Receptor Tumor Targeting. Macromolecular Bioscience, 2015, 15, 1605-1615.	4.1	7
40	Injectable in situ forming hydrogels based on natural and synthetic polymers for potential application in cartilage repair. RSC Advances, 2015, 5, 19715-19723.	3.6	28
41	Matrices of a hydrophobically functionalized hyaluronic acid derivative for the locoregional tumour treatment. Acta Biomaterialia, 2015, 25, 205-215.	8.3	15
42	In situ forming hydrogels of hyaluronic acid and inulin derivatives for cartilage regeneration. Carbohydrate Polymers, 2015, 122, 408-416.	10.2	66
43	A polycarboxylic/amino functionalized hyaluronic acid derivative for the production of pH sensible hydrogels in the prevention of bacterial adhesion on biomedical surfaces. International Journal of Pharmaceutics, 2015, 478, 70-77.	5.2	30
44	Construction and evaluation of sponge scaffolds from hyaluronic acid derivatives for potential cartilage regeneration. Journal of Materials Chemistry B, 2014, 2, 3243.	5.8	14
45	Heparin functionalized polyaspartamide/polyester scaffold for potential blood vessel regeneration. Journal of Biomedical Materials Research - Part A, 2014, 102, 1334-1341.	4.0	26
46	Medicated hydrogels of hyaluronic acid derivatives for use in orthopedic field. International Journal of Pharmaceutics, 2013, 449, 84-94.	5.2	65
47	Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering. Materials Science and Engineering C, 2013, 33, 2541-2549.	7.3	29
48	Injectable in situ forming microgels of hyaluronic acid-g-polylactic acid for methylprednisolone release. European Polymer Journal, 2013, 49, 718-725.	5.4	13
49	A new hyaluronic acid pH sensitive derivative obtained by ATRP for potential oral administration of proteins. International Journal of Pharmaceutics, 2013, 457, 150-157.	5.2	41
50	New hyaluronic acid based brush copolymers synthesized by atom transfer radical polymerization. Carbohydrate Polymers, 2013, 92, 1054-1063.	10.2	21
51	Nanoaggregates Based on New Poly-Hydroxyethyl-Aspartamide Copolymers for Oral Insulin Absorption. Molecular Pharmaceutics, 2013, 10, 1644-1654.	4.6	16
52	Galactosylated Micelles for a Ribavirin Prodrug Targeting to Hepatocytes. Biomacromolecules, 2013, 14, 1838-1849.	5.4	42
53	Dexamethasone Dipropionate Loaded Nanoparticles of $\hat{l}\pm$ -Elastin-g-PLGA for Potential Treatment of Restenosis. Molecular Pharmaceutics, 2013, 10, 4603-4610.	4.6	10
54	Fluorinated and pegylated polyaspartamide derivatives to increase solubility and efficacy of Flutamide. Journal of Drug Targeting, 2012, 20, 433-444.	4.4	17

#	Article	IF	Citations
55	In situ forming hydrogels of new amino hyaluronic acid/benzoyl-cysteine derivatives as potential scaffolds for cartilage regeneration. Soft Matter, 2012, 8, 4918.	2.7	41
56	Inulinâ€Based Hydrogel for Oral Delivery of Flutamide: Preparation, Characterization, and in vivo Release Studies. Macromolecular Bioscience, 2012, 12, 770-778.	4.1	16
57	Mechanical characterization of polysaccharide/polyaminoacid hydrogels as potential scaffolds for tissue regeneration. Macromolecular Research, 2011, 19, 1264-1271.	2.4	1
58	Biocompatible hydrogels based on hyaluronic acid cross-linked with a polyaspartamide derivative as delivery systems for epithelial limbal cells. International Journal of Pharmaceutics, 2011, 414, 104-111.	5.2	30
59	New self-assembling polyaspartylhydrazide copolymer micelles for anticancer drug delivery. International Journal of Pharmaceutics, 2010, 396, 219-228.	5.2	33
60	Self-assembled amphiphilic hyaluronic acid graft copolymers for targeted release of antitumoral drug. Journal of Drug Targeting, 2010, 18, 264-276.	4.4	65
61	New Self-Assembling Polyaspartamide-Based Brush Copolymers Obtained by Atom Transfer Radical Polymerization. Macromolecules, 2009, 42, 3247-3257.	4.8	20
62	Fluorinated derivatives of a polyaspartamide bearing polyethylene glycol chains as oxygen carriers. Journal of Fluorine Chemistry, 2008, 129, 1096-1103.	1.7	9
63	In situ gel forming graft copolymers of a polyaspartamide and polylactic acid: Preparation and characterization. European Polymer Journal, 2008, 44, 3764-3775.	5.4	17
64	Inulin–iron complexes: A potential treatment of iron deficiency anaemia. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 267-276.	4.3	66
65	Fluoropolymer Based on a Polyaspartamide containing 1,2,4-Oxadiazole Units: A Potential Artificial Oxygen (O2) Carrier. Macromolecular Bioscience, 2007, 7, 836-845.	4.1	21
66	Photo-Cross-Linked Hydrogels with Polysaccharideâ^Poly(amino acid) Structure:Â New Biomaterials for Pharmaceutical Applications. Biomacromolecules, 2006, 7, 1302-1310.	5.4	56
67	Synthesis and characterisation of novel chemical conjugates based on $\hat{l}\pm,\hat{l}^2$ -polyaspartylhydrazide and \hat{l}^2 -cyclodextrins. European Polymer Journal, 2006, 42, 2715-2729.	5.4	14
68	New graft copolymers of hyaluronic acid and polylactic acid: Synthesis and characterization. Carbohydrate Polymers, 2006, 66, 379-385.	10.2	110
69	UV-Photocrosslinking of Inulin Derivatives to Produce Hydrogels for Drug Delivery Application. Macromolecular Bioscience, 2005, 5, 1074-1084.	4.1	52
70	pH-Sensitive Hydrogel Based On A Novel Photocross-Linkable Copolymer. Biomacromolecules, 2004, 5, 1973-1982.	5.4	44
71	Evaluation of mucoadhesive properties of $\hat{l}\pm,\hat{l}^2$ -poly(N-hydroxyethyl)-dl-aspartamide and $\hat{l}\pm,\hat{l}^2$ -poly(aspartylhydrazide) using ATRâ \in "FTIR spectroscopy. Polymer, 2002, 43, 6281-6286.	3.8	28
72	Influence of different parameters on drug release from hydrogel systems to a biomembrane model. Evaluation by differential scanning calorimetry technique. Biomaterials, 2000, 21, 821-833.	11.4	56

#	Article	IF	CITATION
73	Effect of pH on the transfer kinetics of an anti-inflammatory drug from polyaspartamide hydrogels to a lipid model membrane. Journal of Controlled Release, 1997, 45, 103-111.	9.9	30
74	Glycidyl methacrylate derivatization of $\hat{i}\pm,\hat{i}^2$ -poly(N-hydroxyethyl)-dl-aspartamide and $\hat{i}\pm,\hat{i}^2$ -polyasparthydrazide. Polymer, 1997, 38, 3315-3323.	3.8	39
75	Effect of alkyl derivatization of gellan gum during the fabrication of electrospun membranes. Journal of Industrial Textiles, 0, , 152808372110075.	2.4	3