

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2785179/publications.pdf Version: 2024-02-01

ТтТи

#	Article	IF	CITATIONS
1	Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures. Journal of the American Ceramic Society, 2014, 97, 1-27.	1.9	894
2	Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy, 2019, 58, 768-777.	8.2	457
3	Relaxor Ferroelectric BaTiO ₃ –Bi(Mg _{2/3} Nb _{1/3})O ₃ Ceramics for Energy Storage Application. Journal of the American Ceramic Society, 2015, 98, 559-566.	1.9	439
4	Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity. Applied Physics Reviews, 2014, 1, 011103.	5.5	395
5	Achieve ultrahigh energy storage performance in BaTiO3–Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy, 2020, 67, 104264.	8.2	320
6	High energy density in silver niobate ceramics. Journal of Materials Chemistry A, 2016, 4, 17279-17287.	5.2	318
7	WHAT CAN BE EXPECTED FROM LEAD-FREE PIEZOELECTRIC MATERIALS?. Functional Materials Letters, 2010, 03, 5-13.	0.7	311
8	Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. Journal of Materials Chemistry A, 2017, 5, 17525-17531.	5.2	288
9	High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges. Journal of Materials Chemistry A, 2021, 9, 18026-18085.	5.2	277
10	Realizing high comprehensive energy storage performance in lead-free bulk ceramics <i>via</i> designing an unmatched temperature range. Journal of Materials Chemistry A, 2019, 7, 27256-27266.	5.2	223
11	Dielectric and temperature stable energy storage properties of 0.88BaTiO3–0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. Journal of Alloys and Compounds, 2015, 640, 416-420.	2.8	216
12	Diffuse Phase Transitions and Giant Electrostrictive Coefficients in Lead-Free Fe ³⁺ -Doped 0.5Ba(Zr _{0.2} Ti _{0.8})O ₃ -0.5(Ba _{0.7} Ca _{0.3})TiO <sub Ferroelectric Ceramics. ACS Applied Materials & Interfaces, 2016, 8, 31109-31119.</sub 	>34/ o ub>	192
13	Phase transitions in tantalum-modified silver niobate ceramics for high power energy storage. Journal of Materials Chemistry A, 2019, 7, 834-842.	5.2	185
14	Ultrahigh dielectric breakdown strength and excellent energy storage performance in lead-free barium titanate-based relaxor ferroelectric ceramics via a combined strategy of composition modification, viscous polymer processing, and liquid-phase sintering. Chemical Engineering Journal, 2020, 398, 125625.	6.6	181
15	Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3–0.35BaTiO3 ceramics. Journal of Applied Physics, 2017, 121, .	1.1	175
16	An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3)O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability. Ceramics International, 2019, 45, 19189-19196.	2.3	149
17	Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Materials Letters, 2014, 137, 79-81.	1.3	147
18	A new family of sodium niobate-based dielectrics for electrical energy storage applications. Journal of the European Ceramic Society, 2019, 39, 2899-2907.	2.8	144

#	Article	IF	CITATIONS
19	Regulation of energy density and efficiency in transparent ceramics by grain refinement. Chemical Engineering Journal, 2020, 390, 124566.	6.6	140
20	Energy storage performance of BaTiO3-based relaxor ferroelectric ceramics prepared through a two-step process. Chemical Engineering Journal, 2021, 419, 129673.	6.6	140
21	Microstructure and dielectric properties of (Nb + In) co-doped rutile TiO2 ceramics. Journal of Applied Physics, 2014, 116, .	1.1	135
22	High electrostrictive coefficient <i>Q</i> 33 in lead-free Ba(Zr0.2Ti0.8)O3- <i>x</i> (Ba0.7Ca0.3)TiO3 piezoelectric ceramics. Applied Physics Letters, 2014, 105, .	1.5	118
23	Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process. Chemical Engineering Journal, 2021, 412, 127555.	6.6	111
24	Phase evolution in (1â~`x)(Na0.5Bi0.5)TiO3-xSrTiO3 solid solutions: A study focusing on dielectric and ferroelectric characteristics. Journal of Materiomics, 2020, 6, 677-691.	2.8	110
25	Energy storage performance of Na0.5Bi0.5TiO3 based lead-free ferroelectric ceramics prepared via non-uniform phase structure modification and rolling process. Chemical Engineering Journal, 2021, 420, 130475.	6.6	102
26	Energy storage properties in Ba 0.4 Sr 0.6 TiO 3 ceramics with addition of semi-conductive BaO–B 2 O 3 –SiO 2 –Na 2 CO 3 –K 2 CO 3 glass. Journal of Alloys and Compounds, 2014, 617, 399-403.	2.8	101
27	Significantly improved energy storage performance of NBT-BT based ceramics through domain control and preparation optimization. Chemical Engineering Journal, 2021, 420, 129900.	6.6	100
28	Domain wall contributions in Pb(Zr,Ti)O3 ceramics at morphotropic phase boundary: A study of dielectric dispersion. Applied Physics Letters, 2010, 96, .	1.5	98
29	Nanodomains in Fe+3-doped lead zirconate titanate ceramics at the morphotropic phase boundary do not correlate with high properties. Applied Physics Letters, 2009, 95, .	1.5	96
30	Piezoelectric activity in Perovskite ferroelectric crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 18-32.	1.7	94
31	Electrostrictive effect in Pb(Mg1/3Nb2/3)O3 <i>-x</i> PbTiO3 crystals. Applied Physics Letters, 2013, 102, .	1.5	90
32	Polymorphic structure evolution and large piezoelectric response of lead-free (Ba,Ca)(Zr,Ti)O3 ceramics. Applied Physics Letters, 2014, 104, .	1.5	80
33	High electric field-induced strain with ultra-low hysteresis and giant electrostrictive coefficient in barium strontium titanate lead-free ferroelectrics. Journal of the European Ceramic Society, 2019, 39, 295-304.	2.8	80
34	Position of defects with respect to domain walls in Fe3+-doped Pb[Zr0.52Ti0.48]O3 piezoelectric ceramics. Applied Physics Letters, 2011, 98, .	1.5	77
35	Dielectric and energy storage properties of BaTiO3–Bi(Mg1/2Ti1/2)O3 ceramic: Influence of glass addition and biasing electric field. Ceramics International 2(217, 43, 35-39, Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50	2.3 87 Td (xm	73 Ilns:mml="ht

36

#	ARTICLE	IF	CITATIONS
37	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mi>Pb</mml:mi><mml:r< td=""><td>no>(1.1</td><td>ıl:mo><mml:r 72</mml:r </td></mml:r<></mml:mrow></mml:mrow>	no>(1.1	ıl:mo> <mml:r 72</mml:r
38	High energy density with ultrahigh discharging efficiency obtained in ceramic-polymer nanocomposites using a non-ferroelectric polar polymer as matrix. Nano Energy, 2020, 70, 104551.	8.2	70
39	Enhanced direct flexoelectricity in paraelectric phase of Ba(Ti0.87Sn0.13)O3 ceramics. Applied Physics Letters, 2013, 102, .	1.5	65
40	Structure evolution and exceptionally ultra-low hysteresis unipolar electric field-induced strain in (1â^'x)NaNbO3-xBaTiO3 lead-free ferroelectrics. Ceramics International, 2018, 44, 5492-5499.	2.3	65
41	Effects of ZnNb 2 O 6 addition on BaTiO 3 ceramics for energy storage. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 1081-1086.	1.7	63
42	Structure evolution, ferroelectric properties, and energy storage performance of CaSnO3 modified BaTiO3-based Pb-free ceramics. Journal of Alloys and Compounds, 2020, 826, 154160.	2.8	57
43	Enhancement of energy storage performance in lead-free barium titanate-based relaxor ferroelectrics through a synergistic two-step strategy design. Chemical Engineering Journal, 2022, 434, 134678.	6.6	57
44	Reverse boundary layer capacitor model in glass/ceramic composites for energy storage applications. Journal of Applied Physics, 2013, 113, .	1.1	56
45	High thermal stability of electric field-induced strain in (1â^'x)(Bi0.5Na0.5)TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 lead-free ferroelectrics. Journal of the European Ceramic Society, 2019, 39, 277-286.	2.8	56
46	Separation of piezoelectric grain resonance and domain wall dispersion in Pb(Zr,Ti)O3 ceramics. Applied Physics Letters, 2009, 94, .	1.5	53
47	All-organic dielectric nanocomposites using conducting polypyrrole nanoclips as filler. Composites Science and Technology, 2018, 167, 285-293.	3.8	51
48	Lattice dynamics and dielectric response of undoped, soft and hard PbZr _{0.42} Ti _{0.58} O ₃ . Phase Transitions, 2010, 83, 917-930.	0.6	50
49	Ionic conduction, colossal permittivity and dielectric relaxation behavior of solid electrolyte Li3La2/3-TiO3 ceramics. Journal of the European Ceramic Society, 2018, 38, 4483-4487.	2.8	50
50	Significantly enhanced room temperature electrocaloric response with superior thermal stability in sodium niobate-based bulk ceramics. Journal of Materials Chemistry A, 2019, 7, 11665-11672.	5.2	50
51	High energy storage and thermal stability under low electric field in Bi0.5Na0.5TiO3-modified BaTiO3-Bi(Zn0.25Ta0.5)O3 ceramics. Chemical Engineering Journal, 2022, 443, 136505.	6.6	50
52	Enhanced antiferroelectric-like relaxor ferroelectric characteristic boosting energy storage performance of (Bi0.5Na0.5)TiO3-based ceramics via defect engineering. Journal of Materiomics, 2022, 8, 527-536.	2.8	47
53	A strategy for obtaining high electrostrictive properties and its application in barium stannate titanate lead-free ferroelectrics. Ceramics International, 2018, 44, 21816-21824.	2.3	45
54	Enhanced electrical properties and energy storage performances of NBT-ST Pb-free ceramics through glass modification. Journal of Alloys and Compounds, 2020, 836, 154961.	2.8	44

#	Article	IF	CITATIONS
55	Achieving single domain relaxor-PT crystals by high temperature poling. CrystEngComm, 2014, 16, 2892-2897.	1.3	43
56	Ultrahigh energy harvesting properties in textured lead-free piezoelectric composites. Journal of Materials Chemistry A, 2019, 7, 3603-3611.	5.2	43
57	Origin of composition-insensitive electrostrictive coefficient and continuous decrease of domain wall density in (1-x)NaNbO3-xBaTiO3 lead-free ferroelectrics. Journal of the European Ceramic Society, 2018, 38, 3127-3135.	2.8	40
58	Effective strategy to improve energy storage properties in lead-free (Ba0.8Sr0.2)TiO3-Bi(Mg0.5Zr0.5)O3 relaxor ferroelectric ceramics. Chemical Engineering Journal, 2022, 446, 137389.	6.6	40
59	Dielectric, ferroelectric and energy storage properties of lead-free (1-x)Ba0.9Sr0.1TiO3-xBi(Zn0.5Zr0.5)O3 ferroelectric ceramics sintered at lower temperature. Ceramics International, 2019, 45, 15556-15565.	2.3	39
60	Na0.25Sr0.5Bi0.25TiO3 relaxor ferroelectric ceramic with greatly enhanced electric storage property by a B-site ion doping. Ceramics International, 2020, 46, 11680-11688.	2.3	39
61	Phase evolution and relaxor to ferroelectric phase transition boosting ultrahigh electrostrains in (1â^'x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 solid solutions. Journal of Materiomics, 2022, 8, 335-346.	2.8	39
62	Abnormal C–V curve and clockwise hysteresis loop in ferroelectric barium stannate titanate ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 120, 64-67.	1.7	38
63	Determination of three-dimensional orientations of ferroelectric single crystals by an improved rotating orientation x-ray diffraction method. Review of Scientific Instruments, 2009, 80, 085106.	0.6	38
64	A compromise between piezoelectricity and transparency in KNN-based ceramics: The dual functions of Li2O addition. Journal of the European Ceramic Society, 2020, 40, 2331-2337.	2.8	38
65	Ultra-slim pinched polarization-electric field hysteresis loops and thermally stable electrostrains in lead-free sodium bismuth titanate-based solid solutions. Journal of Alloys and Compounds, 2019, 788, 1182-1192.	2.8	37
66	Ultrahigh electrostrictive effect in potassium sodium niobate-based lead-free ceramics. Journal of the European Ceramic Society, 2022, 42, 944-953.	2.8	37
67	Ionic and electronic conductivity of solid electrolyte Li0.5La0.5TiO3 doped with LiO2-SiO2-B2O3 glass. Journal of Alloys and Compounds, 2018, 739, 892-896.	2.8	35
68	High electrostrictive effect in La3+-doped Ba(Zr0.2Ti0.8)O3 lead-free ferroelectrics. Journal of Alloys and Compounds, 2019, 776, 599-605.	2.8	35
69	Crystallization behaviors and related dielectric properties of semicrystalline matrix in polymer-ceramic nanocomposites. Composites Part B: Engineering, 2021, 224, 109195.	5.9	35
70	Characterizations of P(VDF-HFP)-BaTiO3 nanocomposite films fabricated by a spin-coating process. Ceramics International, 2019, 45, 17758-17766.	2.3	34
71	Study of the structure, electrical properties, and energy storage performance of ZnO-modified Ba0.65Sr0.245Bi0.07TiO3 Pb-free ceramics. Ceramics International, 2020, 46, 8-16.	2.3	33
72	Thermal stability of dielectric and energy storage performances of Ca-substituted BNTZ ferroelectric ceramics. Ceramics International, 2021, 47, 6298-6309.	2.3	33

#	Article	IF	CITATIONS
73	Achieving ultrahigh energy storage performance over a broad temperature range in (Bi0.5Na0.5)TiO3-based eco-friendly relaxor ferroelectric ceramics via multiple engineering processes. Journal of Alloys and Compounds, 2022, 896, 163139.	2.8	33
74	The dielectric properties for (Nb,In,B) co-doped rutile TiO 2 ceramics. Ceramics International, 2017, 43, 6403-6409.	2.3	32
75	Cyclic performance of bonded sleeve beam-column connections for FRP tubular sections. Composites Part B: Engineering, 2018, 142, 171-182.	5.9	32
76	Ferroelectric transitions in silver niobate ceramics. Journal of Materials Chemistry C, 2019, 7, 1028-1034.	2.7	32
77	Symmetry changes during relaxation process and pulse discharge performance of the BaTiO3-Bi(Mg1/2Ti1/2)O3 ceramic. Journal of Applied Physics, 2018, 124, .	1.1	31
78	Ultra-low hysteresis electrostrictive strain with high thermal stability in Bi(Li0.5Nb0.5)O3-modified BaTiO3 lead-free ferroelectrics. Journal of Alloys and Compounds, 2018, 753, 558-565.	2.8	29
79	Thermally stable electrostrains and composition-dependent electrostrictive coefficient Q33 in lead-free ferroelectric ceramics. Ceramics International, 2019, 45, 22854-22861.	2.3	29
80	Enhanced energy storage performance of eco-friendly BNT-based relaxor ferroelectric ceramics via polarization mismatch-reestablishment and viscous polymer process. Ceramics International, 2022, 48, 6512-6519.	2.3	28
81	Relaxor antiferroelectric-like characteristic boosting enhanced energy storage performance in eco-friendly (Bi0.5Na0.5)TiO3-based ceramics. Journal of the European Ceramic Society, 2022, 42, 4528-4538.	2.8	28
82	Silver niobate perovskites: structure, properties and multifunctional applications. Journal of Materials Chemistry A, 2022, 10, 14747-14787.	5.2	27
83	Effect of Dy2O3 content on the dielectric, ferroelectric, and energy storage properties of lead-free 0.5Na0.5Bi0.5TiO3–0.5SrTiO3 bulk ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 13556-13566.	1.1	26
84	Ultra-low hysteresis electric field-induced strain with high electrostrictive coefficient in lead-free Ba(Zr Ti1-)O3 ferroelectrics. Journal of Alloys and Compounds, 2019, 784, 931-938.	2.8	26
85	Laminated Modulation of Tricritical Ferroelectrics Exhibiting Highly Enhanced Dielectric Permittivity and Temperature Stability. Advanced Functional Materials, 2019, 29, 1807162.	7.8	25
86	High dielectric permittivity and electrostrictive strain in a wide temperature range in relaxor ferroelectric (1-x)[Pb(Mg1/3Nb2/3)O3-PbTiO3]-xBa(Zn1/3Nb2/3)O3 solid solutions. Ceramics International, 2019, 45, 5518-5524.	2.3	24
87	Extremely High Piezoelectric Properties in Pb-Based Ceramics through Integrating Phase Boundary and Defect Engineering. ACS Applied Materials & Interfaces, 2021, 13, 38517-38525.	4.0	23
88	Ultrahigh room temperature electrocaloric response in lead-free bulk ceramics <i>via</i> tape casting. Journal of Materials Chemistry C, 2019, 7, 6860-6866.	2.7	22
89	Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix. Journal of Materials Science, 2021, 56, 19983-19995.	1.7	22
90	Enhanced energy storage performance under low electric field in Sm3+ doped AgNbO3 ceramics. Journal of Materiomics, 2022, 8, 266-273.	2.8	22

#	Article	IF	CITATIONS
91	Electrostriction coefficient of ferroelectric materials from ab initio computation. AIP Advances, 2016, 6, 065122.	0.6	21
92	Characterization of frequency-dependent glass transition temperature by Vogel–Fulcher relationship. Journal Physics D: Applied Physics, 2008, 41, 152008.	1.3	20
93	Domain switching contribution to piezoelectric response in BaTiO3 single crystals. Applied Physics Letters, 2008, 93, .	1.5	19
94	Dielectric properties and I-V characteristics of Li0.5La0.5TiO3 solid electrolyte for ceramic supercapacitors. Ceramics International, 2019, 45, 8243-8247.	2.3	19
95	Dielectric and electro-mechanic nonlinearities in perovskite oxide ferroelectrics, relaxors, and relaxor ferroelectrics. Journal of Applied Physics, 2021, 129, .	1.1	19
96	Lead-free Nonlinear Dielectric Ceramics for Energy Storage Applications: Current Status and Challenges. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2018, 33, 1046.	0.6	19
97	Understanding doped perovskite ferroelectrics with defective dipole model. Journal of Chemical Physics, 2018, 149, 244122.	1.2	17
98	Bending Performance of Splice Connections for Assembly of Tubular Section FRP Members: Experimental and Numerical Study. Journal of Composites for Construction, 2019, 23, 04019040.	1.7	17
99	Charge effects in donorâ€doped perovskite ferroelectrics. Journal of the American Ceramic Society, 2020, 103, 5392-5399.	1.9	17
100	High thermally stable dielectric permittivity, polarization enhancement and electrostrictive properties in Zr-substituted bismuth sodium titanate lead-free ferroelectric ceramics. Ceramics International, 2020, 46, 22889-22899.	2.3	16
101	Li+ and Sm3+ co-doped AgNbO3-based antiferroelectric ceramics for high-power energy storage. Ceramics International, 2022, 48, 32703-32711.	2.3	15
102	Phase transition behavior and high electrostrictive strains in Bi(Li0.5Nb0.5)O3-doped lead magnesium niobate-based solid solutions. Journal of Alloys and Compounds, 2019, 806, 206-214.	2.8	14
103	Bi(Mg0.5Ti0.5)O3-doped NaNbO3 ferroelectric ceramics: Linear regulation of Curie temperature and ultra-high thermally stable dielectric response. Ceramics International, 2019, 45, 21175-21182.	2.3	14
104	Effect of SnO–P2O5–MgO glass addition on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Ceramics International, 2022, 48, 157-163.	2.3	14
105	Adaptive Tracking of SISO Nonlinear Systems Using Multilayered Neural Networks. , 1992, , .		14
106	Applications of the rotating orientation XRD method to oriented materials. Journal Physics D: Applied Physics, 2009, 42, 012001.	1.3	13
107	Enhanced breakdown strength and improved ferroelectric properties in lead-containing relaxor ferroelectric ceramics with addition of glass. Materials Research Express, 2019, 6, 116310.	0.8	13
108	Structure tailorable triple-phase and pure double-polar-phase flexible IF-WS2@poly(vinylidene) Tj ETQq0 0 0 r	gBT /Overloc 2.8	k 10 Tf 50 67 13

Materiomics, 2020, 6, 563-572.

#	Article	IF	CITATIONS
109	Structure, dielectric, electrostrictive and electrocaloric properties of environmentally friendly Bi-substituted BCZT ferroelectric ceramics. Ceramics International, 2021, 47, 34676-34686.	2.3	13
110	Nonstoichiometric effect on dielectric and large-signal electromechanical properties of environmentally friendly BNT-6BT ferroelectric ceramics. Ceramics International, 2022, 48, 14329-14337.	2.3	13
111	Large electrostrain and high energy-storage properties of (Sr1/3Nb2/3)4+-substituted (Bi0.51Na0.5)TiO3-0.07BaTiO3 lead-free ceramics. Ceramics International, 2022, 48, 23975-23982.	2.3	13
112	Study of ferroelectric domain morphology in PMN–32% PT single crystals. Ceramics International, 2004, 30, 1695-1698.	2.3	12
113	An Investigation of Dielectric, Piezoelectric Properties and Microstructures of Bi0.5Na0.5TiO3-BaTiO3-Bi0.5K0.5TiO3 Lead-Free Piezoelectric Ceramics Doped with K2AlNbO5 Compound. Journal of Electronic Materials, 2017, 46, 5287-5295.	1.0	12
114	Structure and conductivity of perovskite Li0.355La0.35Sr0.3Ti0.995M0.005O3 (M = Al, Co and In) ceramics. Ceramics International, 2019, 45, 23941-23947.	2.3	12
115	Polymer-Based Nanocomposites with High Dielectric Permittivity. , 2019, , 201-243.		12
116	Structure-Driven, Ferroelectric Wake-Up Effect for Electrical Fatigue Relief. Chemistry of Materials, 2020, 32, 6456-6463.	3.2	12
117	Nonstoichiometric effect of A-site complex ions on structural, dielectric, ferroelectric, and electrostrain properties of bismuth sodium titanateÂceramics. Ceramics International, 2021, 47, 32747-32755.	2.3	12
118	A wearable, nozzle‑diffuser microfluidic pump based on high‑performance ferroelectric nanocomposites. Sensors and Actuators B: Chemical, 2021, 347, 130611.	4.0	12
119	Effect of Sn Content on Structure and Properties Near the Morphotropic Phase Boundary in a PbSnO3-PbZrO3-PbTiO3 Ternary System. Journal of Electronic Materials, 2014, 43, 2614-2620.	1.0	11
120	Relaxation behavior and electrical inhomogeneity in 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 ceramic. Ceramics International, 2017, 43, 12828-12834.	2.3	11
121	Self-assembled full nanowire P(VDF-TrFE) films with both anisotropic and high bidirectional piezoelectricity. Nanoscale, 2019, 11, 14896-14906.	2.8	11
122	Phase coexistence and evolution in sol-gel derived BY-PT-PZ ceramics with significantly enhanced piezoelectricity and high temperature stability. Journal of Materiomics, 2019, 5, 394-403.	2.8	11
123	Silver deficiency effect on dielectric properties and energy storage performance of AgNbO3 ceramics. Ceramics International, 2021, 47, 26178-26184.	2.3	11
124	Symmetry-mode analysis for intuitive observation of structure–property relationships in the lead-free antiferroelectric (1â^' <i>x</i>)AgNbO ₃ – <i>x</i> LiTaO ₃ . IUCrJ, 2019, 6, 740-750.	1.0	11
125	Achieving Both High d 33 and High Q m for the Pb(Zr0.26Sn0.26Ti0.48)1â^'x Fe x O3â^'x/2 Ternary System for Use in High-Power Ultrasonic Transducers. Journal of Electronic Materials, 2014, 43, 3905-3911.	1.0	10
126	Phase distribution and corresponding piezoelectric responses in a morphotropic phase boundary Pb(Mg Nb)O3-PbTiO3 single crystal revealed by confocal Raman spectroscopy and piezo-response force microscopy. Journal of the European Ceramic Society, 2019, 39, 4131-4138.	2.8	10

#	Article	IF	CITATIONS
127	Enhanced performance by inducing defect dipoles in lead based relaxor ferroelectric PHT-based ceramics. Ceramics International, 2021, 47, 23637-23646.	2.3	10
128	Debye-like relaxation behavior and electric field induced dipole re-orientation of the 0.6BaTiO3-0.4Bi(Mg1/2Ti1/2)O3 ceramic. Ceramics International, 2018, 44, 922-930.	2.3	9
129	Hole-Pinned Defect Clusters for a Large Dielectric Constant up to GHz in Zinc and Niobium Codoped Rutile SnO ₂ . ACS Applied Materials & Interfaces, 2021, 13, 54124-54132.	4.0	9
130	Effects of <scp><scp>InNbO</scp></scp> ₄ Fabrication on Perovskite <scp>PIN</scp> â€ <scp>PMN</scp> â€ <scp>PT</scp> . Journal of the American Ceramic Society, 2014, 97, 3110-3115.	1.9	8
131	Dielectric and energy storage properties of barium strontium titanate based glass–ceramics prepared by sol–gel method. Journal of Sol-Gel Science and Technology, 2014, 71, 522-529.	1.1	8
132	Improved dielectric energy storage performance of Na0.5Bi0.5TiO3–Sr0.7Nd0.2TiO3 lead-free ceramics by adding an appropriate amount of AgNbO3. Ceramics International, 2022, 48, 31223-31232.	2.3	8
133	Acoustically induced transparency by using concentric spherical shells with coaxial aperture array. Applied Physics Letters, 2016, 109, .	1.5	7
134	Phonon band structures of the three dimensional latticed pentamode metamaterials. AIP Advances, 2017, 7, .	0.6	7
135	Microstructure and bidirectional dielectric tunability behaviour of Nd3+-doped KSr2Nb5O15 lead-free ceramics. Journal of Materiomics, 2021, 7, 976-987.	2.8	7
136	Cobalt ions doped PNN-PHT ceramics with excellent piezoelectric properties. Ceramics International, 2021, 47, 32414-32423.	2.3	7
137	Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures. , 2020, , 21-104.		7
138	Colossal permittivity and ultralow dielectric loss in SrTi1-Nb O3 ceramics sintered at different atmospheres via defect chemistry improvement. Ceramics International, 2022, 48, 12692-12698.	2.3	7
139	Isothermal relaxation of field-biased barium stannate titanate. Applied Physics Letters, 2005, 87, 082905.	1.5	6
140	Observation of piezoelectric resonance in time domain transient current of ferroelectric ceramics and crystals. Applied Physics Letters, 2005, 87, 072910.	1.5	6
141	Dielectric relaxation and phase transition behavior of (1–x)Pb(Zn1/3Nb2/3)O3-xBaTiO3 binary solid solutions. Ceramics International, 2018, 44, 18491-18498.	2.3	6
142	Influence of core–shell structured conductive fillers on the electromechanical properties of ferroelectric nanocomposites. Journal of Materials Science, 2021, 56, 9157-9170.	1.7	6
143	Exploring Charged Defects in Ferroelectrics by the Switching Spectroscopy Piezoresponse Force Microscopy. Small Methods, 2022, 6, 2101289.	4.6	6
144	Ultra-slim electrostrains with superior temperature-stability in lead-free sodium niobate-based ferroelectric perovskite. Journal of Materiomics, 2022, 8, 1230-1238.	2.8	6

#	Article	IF	CITATIONS
145	Evolution of transverse piezoelectric response of lead zirconate titanate ceramics under hydrostatic pressure. Journal Physics D: Applied Physics, 2009, 42, 072001.	1.3	5
146	Microstructure and ionic conductivity of Li0.5-La0.5(Ti1-Nb)O3 solid-state electrolytes. Journal of Alloys and Compounds, 2022, 896, 163084.	2.8	5
147	High comprehensive electrocaloric performance in barium titanate-based ceramics via integrating diffuse phase transition near room temperature and a high applied electric field. Ceramics International, 2022, 48, 6842-6849.	2.3	4
148	Enhanced energy-storage properties in lead-free (Bi0.5Na0.5)TiO3-based dielectric ceramics via glass additive and viscous polymer rolling process. Ceramics International, 2022, 48, 15711-15720.	2.3	4
149	Dielectric and ferroelectric properties of CuO-doped lead magnesium niobate-based relaxor ferroelectric ceramics. Journal of Advanced Dielectrics, 2019, 09, 1950033.	1.5	3
150	Enhanced dielectric and ferroelectric properties in lead magnesium niobate-lead titanate ferroelectrics solid solutions by controlling the sintering protocols. Ceramics International, 2020, 46, 25608-25618.	2.3	3
151	Piezoelectric resonance of lead zirconate titanate ceramics excited by a stepwise electric field. Journal of Applied Physics, 2006, 99, 014105.	1.1	2
152	Composition dependence of dielectric properties in Pb(Zn1â^•3Nb2â^•3)O ₃ –PbTiO ₃ –BaTiO ₃ (PZN–PT–BT) relaxor ferroelectric ceramics. Journal of Advanced Dielectrics, 2017, 07, 1750008.	1.5	2
153	Angle-insensitive acoustic metamaterial plane with extraordinary transmission using two embedded and coaxial split spherical shells. Applied Physics Express, 2017, 10, 104001.	1.1	2
154	Laminated Tricritical Ferroelectrics: Laminated Modulation of Tricritical Ferroelectrics Exhibiting Highly Enhanced Dielectric Permittivity and Temperature Stability (Adv. Funct. Mater. 17/2019). Advanced Functional Materials, 2019, 29, 1970109.	7.8	2
155	Enhancement of permittivity in P(VDFâ€CTFE)/metal–organic frameworks mixed matrix membranes. Journal of Applied Polymer Science, 2020, 137, 49539.	1.3	2
156	Formation mechanism of barium titanate single crystalline microplates based on topochemical transformation using bismuth-based precursors. Ceramics International, 2021, 47, 4543-4550.	2.3	2
157	High performance PIN– PHT ceramics through addition of CuF2 and low-temperature sintering. Ceramics International, 2022, 48, 18635-18644.	2.3	2
158	Structures and energies of Σ3 asymmetric tilt grain boundaries in silicon. Journal of Materials Research, 2021, 36, 2025-2036.	1.2	1
159	Electrocaloric Effect of Lead-free Bulk Ceramics: Current Status and Challenges. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2019, , 308.	0.6	1
160	Study of abnormal transient current of PMN-32%PT ferroelectric single crystal in time domain and frequency domain. Journal of Electroceramics, 2008, 21, 601-604.	0.8	0
161	Evolution of piezoelectric resonance in switching current of 0.68Pb(Mg1/3Nb2/3)O3–0.32PbTiO3ferroelectric single crystal excited by a stepwise electric field. Journal Physics D: Applied Physics, 2008, 41, 202005.	1.3	0
162	Editorial — Energy storage materials. Journal of Advanced Dielectrics, 2018, 08, 1802001.	1.5	0

#	Article	IF	CITATIONS
163	Excellent piezoelectric property and thermal stability of Pb(Sc, Nb)O3-Pb(Hf, Ti)O3ceramic. Journal of Materials Science: Materials in Electronics, 2021, 32, 14654.	1.1	0
164	Structural evolution and ferroelectric properties in lead-free (1â^'x)(Bi0.5Na0.4K0.1)TiO3-xSrTiO3 solid solutions. Ceramics International, 2022, , .	2.3	0