
Christopher R West

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2785152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence-based scientific exercise guidelines for adults with spinal cord injury: an update and a new guideline. Spinal Cord, 2018, 56, 308-321.	1.9	289
2	Effects of exercise on fitness and health of adults with spinal cord injury. Neurology, 2017, 89, 736-745.	1.1	150
3	Spinal cord perfusion pressure predicts neurologic recovery in acute spinal cord injury. Neurology, 2017, 89, 1660-1667.	1.1	121
4	Association of Epidural Stimulation With Cardiovascular Function in an Individual With Spinal Cord Injury. JAMA Neurology, 2018, 75, 630.	9.0	65
5	Cardiovascular Function in Individuals with Incomplete Spinal Cord Injury: A Systematic Review. Topics in Spinal Cord Injury Rehabilitation, 2013, 19, 267-278.	1.8	56
6	Autonomic Cardiovascular Control in Paralympic Athletes with Spinal Cord Injury. Medicine and Science in Sports and Exercise, 2014, 46, 60-68.	0.4	47
7	The Role of Autonomic Function on Sport Performance in Athletes With Spinal Cord Injury. PM and R, 2014, 6, S58-65.	1.6	47
8	Autonomic Function and Exercise Performance in Elite Athletes with Cervical Spinal Cord Injury. Medicine and Science in Sports and Exercise, 2013, 45, 261-267.	0.4	45
9	Passive hindâ€limb cycling improves cardiac function and reduces cardiovascular disease risk in experimental spinal cord injury. Journal of Physiology, 2014, 592, 1771-1783.	2.9	45
10	Characterizing the Temporal Development of Cardiovascular Dysfunction in Response to Spinal Cord Injury. Journal of Neurotrauma, 2015, 32, 922-930.	3.4	45
11	Sex differences in diaphragmatic fatigue: the cardiovascular response to inspiratory resistance. Journal of Physiology, 2018, 596, 4017-4032.	2.9	45
12	Resting Cardiopulmonary Function in Paralympic Athletes with Cervical Spinal Cord Injury. Medicine and Science in Sports and Exercise, 2012, 44, 323-329.	0.4	41
13	Cardiac Consequences of Autonomic Dysreflexia in Spinal Cord Injury. Hypertension, 2016, 68, 1281-1289.	2.7	41
14	The Effects of a Patient and Provider Co-Developed, Behavioral Physical Activity Intervention on Physical Activity, Psychosocial Predictors, and Fitness in Individuals with Spinal Cord Injury: A Randomized Controlled Trial. Sports Medicine, 2019, 49, 1117-1131.	6.5	41
15	Effects of abdominal binding on field-based exercise responses in Paralympic athletes with cervical spinal cord injury. Journal of Science and Medicine in Sport, 2014, 17, 351-355.	1.3	38
16	Effect of abdominal binding on respiratory mechanics during exercise in athletes with cervical spinal cord injury. Journal of Applied Physiology, 2014, 117, 36-45.	2.5	31
17	Empirical targets for acute hemodynamic management of individuals with spinal cord injury. Neurology, 2019, 93, e1205-e1211.	1.1	31
18	Passive Hind-Limb Cycling Reduces the Severity of Autonomic Dysreflexia After Experimental Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2016, 30, 317-327.	2.9	30

CHRISTOPHER R WEST

#	Article	IF	CITATIONS
19	No effect of arm-crank exercise on diaphragmatic fatigue or ventilatory constraint in Paralympic athletes with cervical spinal cord injury. Journal of Applied Physiology, 2010, 109, 358-366.	2.5	29
20	Effects of abdominal binding on cardiorespiratory function in cervical spinal cord injury. Respiratory Physiology and Neurobiology, 2012, 180, 275-282.	1.6	28
21	Spinal Cord Injury Causes Systolic Dysfunction and Cardiomyocyte Atrophy. Journal of Neurotrauma, 2018, 35, 424-434.	3.4	28
22	Effect of diaphragm fatigue on subsequent exercise tolerance in healthy men and women. Journal of Applied Physiology, 2018, 125, 1987-1996.	2.5	28
23	Boosting in Elite Athletes with Spinal Cord Injury: A Critical Review of Physiology and Testing Procedures. Sports Medicine, 2015, 45, 1133-1142.	6.5	27
24	Peak Heart Rates and Sympathetic Function in Tetraplegic Nonathletes and Athletes. Medicine and Science in Sports and Exercise, 2015, 47, 1259-1264.	0.4	26
25	High Thoracic Contusion Model for the Investigation of Cardiovascular Function after Spinal Cord Injury. Journal of Neurotrauma, 2017, 34, 671-684.	3.4	26
26	Minocycline Reduces the Severity of Autonomic Dysreflexia after Experimental Spinal Cord Injury. Journal of Neurotrauma, 2018, 35, 2861-2871.	3.4	26
27	Respiratory muscle training in athletes with cervical spinal cord injury: effects on cardiopulmonary function and exercise capacity. Journal of Physiology, 2019, 597, 3673-3685.	2.9	26
28	Transverse tendon stiffness is reduced in people with Achilles tendinopathy: A cross-sectional study. PLoS ONE, 2019, 14, e0211863.	2.5	25
29	A comparison of passive hindlimb cycling and active upper-limb exercise provides new insights into systolic dysfunction after spinal cord injury. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H861-H870.	3.2	22
30	Physical activity measurement in people with spinal cord injury: comparison of accelerometry and self-report (the Physical Activity Recall Assessment for People with Spinal Cord Injury). Disability and Rehabilitation, 2020, 42, 240-246.	1.8	21
31	Cardio-centric hemodynamic management improves spinal cord oxygenation and mitigates hemorrhage in acute spinal cord injury. Nature Communications, 2020, 11, 5209.	12.8	19
32	Neuroprotection, Plasticity Manipulation, and Regenerative Strategies to Improve Cardiovascular Function following Spinal Cord Injury. Journal of Neurotrauma, 2015, 32, 609-621.	3.4	18
33	Experimental Spinal Cord Injury Causes Left-Ventricular Atrophy and Is Associated with an Upregulation of Proteolytic Pathways. Journal of Neurotrauma, 2019, 36, 950-961.	3.4	16
34	Translating the international scientific spinal cord injury exercise guidelines into community and clinical practice guidelines: a Canadian evidence-informed resource. Spinal Cord, 2020, 58, 647-657.	1.9	16
35	Differences in Left Ventricular Global Function and Mechanics in Paralympic Athletes with Cervical and Thoracic Spinal Cord Injuries. Frontiers in Physiology, 2016, 7, 110.	2.8	15
36	Wrist Accelerometry for Physical Activity Measurement in Individuals With Spinal Cord Injury—A Need for Individually Calibrated Cut-Points. Archives of Physical Medicine and Rehabilitation, 2018, 99, 684-689.	0.9	15

CHRISTOPHER R WEST

#	Article	IF	CITATIONS
37	Spinal cord injuryâ€induced cardiomyocyte atrophy and impaired cardiac function are severity dependent. Experimental Physiology, 2018, 103, 179-189.	2.0	15
38	Characterizing the Severity of Autonomic Cardiovascular Dysfunction after Spinal Cord Injury Using a Novel 24 Hour Ambulatory Blood Pressure Analysis Software. Journal of Neurotrauma, 2017, 34, 559-566.	3.4	14
39	Challenging cardiac function post-spinal cord injury with dobutamine. Autonomic Neuroscience: Basic and Clinical, 2018, 209, 19-24.	2.8	14
40	Active-Arm Passive-Leg Exercise Improves Cardiovascular Function in Spinal Cord Injury. American Journal of Physical Medicine and Rehabilitation, 2015, 94, e102-e106.	1.4	13
41	Spinal cord injury impairs cardiac function due to impaired bulbospinal sympathetic control. Nature Communications, 2022, 13, 1382.	12.8	13
42	Physical exercise improves arterial stiffness after spinal cord injury. Journal of Spinal Cord Medicine, 2014, 37, 782-785.	1.4	12
43	Autonomic Nervous System Dysfunction Following Spinal Cord Injury: Cardiovascular, Cerebrovascular, and Thermoregulatory Effects. Current Physical Medicine and Rehabilitation Reports, 2015, 3, 197-205.	0.8	12
44	A 20 × 20 m repeated sprint field test replicates the demands of wheelchair rugby. Journal of Science and Medicine in Sport, 2018, 21, 753-757.	1.3	12
45	Autonomic cardiovascular control and sports classification in Paralympic athletes with spinal cord injury. Disability and Rehabilitation, 2017, 39, 127-134.	1.8	11
46	A porcine model for studying the cardiovascular consequences of highâ€ŧhoracic spinal cord injury. Journal of Physiology, 2020, 598, 929-942.	2.9	11
47	Physiological Considerations to Support Podium Performance in Para-Athletes. Frontiers in Rehabilitation Sciences, 2021, 2, .	1.2	10
48	From guidelines to practice: development and implementation of disability-specific physical activity guidelines. Disability and Rehabilitation, 2021, 43, 3432-3439.	1.8	9
49	How does cervical spinal cord injury impact the cardiopulmonary response to exercise?. Respiratory Physiology and Neurobiology, 2021, 293, 103714.	1.6	9
50	A pragmatic randomized controlled trial testing the effects of the international scientific SCI exercise guidelines on SCI chronic pain: protocol for the EPIC-SCI trial. Spinal Cord, 2020, 58, 746-754.	1.9	8
51	Left Ventricular Mechanics in Untrained and Trained Males with Tetraplegia. Journal of Neurotrauma, 2017, 34, 591-598.	3.4	7
52	Spinal Cord Disruption Is Associated with a Loss of Cushing-Like Blood Pressure Interactions. Journal of Neurotrauma, 2019, 36, 1487-1490.	3.4	7
53	Effects of a Tailored Physical Activity Intervention on Cardiovascular Structure and Function in Individuals With Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2021, 35, 692-703.	2.9	7
54	Effects of early exercise training on the severity of autonomic dysreflexia following incomplete spinal cord injury in rodents. Physiological Reports, 2021, 9, e14969.	1.7	7

CHRISTOPHER R WEST

#	Article	IF	CITATIONS
55	Development of Cardiometabolic Health indicators to advance the quality of spinal cord injury rehabilitation: SCI-High Project. Journal of Spinal Cord Medicine, 2019, 42, 166-175.	1.4	6
56	Hemorrhage and Locomotor Deficits Induced by Pain Input after Spinal Cord Injury Are Partially Mediated by Changes in Hemodynamics. Journal of Neurotrauma, 2021, 38, 3406-3430.	3.4	6
57	Perspective: Does Laboratory-Based Maximal Incremental Exercise Testing Elicit Maximum Physiological Responses in Highly-Trained Athletes with Cervical Spinal Cord Injury?. Frontiers in Physiology, 2016, 6, 419.	2.8	5
58	Effects of early and delayed initiation of exercise training on cardiac and haemodynamic function after spinal cord injury. Experimental Physiology, 2017, 102, 154-163.	2.0	5
59	Assessment of Pulmonary Restriction in Cervical Spinal Cord Injury: A Preliminary Report. Archives of Physical Medicine and Rehabilitation, 2012, 93, 1463-1465.	0.9	4
60	Development of an Algorithm to Perform a Comprehensive Study of Autonomic Dysreflexia in Animals with High Spinal Cord Injury Using a Telemetry Device. Journal of Visualized Experiments, 2016, , .	0.3	4
61	Exercise-induced diaphragm fatigue in a Paralympic champion rower with spinal cord injury. Journal of Applied Physiology, 2018, 124, 805-811.	2.5	3
62	Effect of Unintentional Boosting on Exercise Performance in a Tetraplegic Athlete. Medicine and Science in Sports and Exercise, 2018, 50, 2398-2400.	0.4	3
63	Contribution of Brain Processes to Tissue Loss After Spinal Cord Injury: Does a Pain-Induced Rise in Blood Pressure Fuel Hemorrhage?. Frontiers in Systems Neuroscience, 2021, 15, 733056.	2.5	3
64	Cardiovascular responses to heat acclimatisation in athletes with spinal cord injury. Journal of Science and Medicine in Sport, 2021, 24, 756-762.	1.3	2
65	Experimental high thoracic spinal cord injury impairs the cardiac and cerebrovascular response to orthostatic challenge in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H716-H727.	3.2	2
66	Markers of susceptibility to cardiac arrhythmia in experimental spinal cord injury and the impact of sympathetic stimulation and exercise training. Autonomic Neuroscience: Basic and Clinical, 2021, 235, 102867.	2.8	2
67	Influence of respiratory loading on leftâ€ventricular function in cervical spinal cord injury. Journal of Physiology, 0, , .	2.9	2
68	Development of a Spinal Cord Injury Model Permissive to Study the Cardiovascular Effects of Rehabilitation Approaches Designed to Induce Neuroplasticity. Biology, 2021, 10, 1006.	2.8	1
69	Respiratory System Responses to Exercise in Spinal Cord Injury. , 2016, , 51-75.		1
70	Temporal Changes of Cardiac Structure, Function, and Mechanics During Sub-acute Cervical and Thoracolumbar Spinal Cord Injury in Humans: A Case-Series. Frontiers in Cardiovascular Medicine, 0, 9,	2.4	1
71	Development of a Rodent Spinal Cord Injury Model Permissive to Study the Cardiovascular Effects of Rehabilitation Approaches Designed to Induce Neuroplasticity. FASEB Journal, 2021, 35, .	0.5	0
72	V alidity of Assessing in vivo Cardiac Contractility Using A "Lessâ€Invasive―Approach during Mechanical Ventilation: Insights from Small and Large Animal Models. FASEB Journal, 2021, 35, .	0.5	0

#	Article	IF	CITATIONS
73	Orthostatic hypotension is associated with impaired cardiac structure and function after spinal cord injury. FASEB Journal, 2021, 35, .	0.5	0
74	Impact of Spinal Cord Injury and Chronically Induced Orthostatic Hypotension on Left Ventricular Contractility and Stiffness. FASEB Journal, 2019, 33, 531.8.	0.5	0
75	Preserved Cardioâ€Inotropic Baroreflex Function Following Optimized Hemodynamic Management in Highâ€Thoracic Spinal Cord Injury. FASEB Journal, 2022, 36, .	0.5	О