
Ziarih Hawi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2784916/publications.pdf Version: 2024-02-01

7ιλριμ Ηλιλι

#	Article	IF	CITATIONS
1	Environmental exposures associated with elevated risk for autism spectrum disorder may augment the burden of deleterious de novo mutations among probands. Molecular Psychiatry, 2022, 27, 710-730.	4.1	36
2	Evidence against benefits from cognitive training and transcranial direct current stimulation in healthy older adults. Nature Human Behaviour, 2021, 5, 146-158.	6.2	26
3	A rare missense variant in the <i>ATP2C2</i> gene is associated with language impairment and related measures. Human Molecular Genetics, 2021, 30, 1160-1171.	1.4	10
4	The Monash Autism-ADHD genetics and neurodevelopment (MAGNET) project design and methodologies: a dimensional approach to understanding neurobiological and genetic aetiology. Molecular Autism, 2021, 12, 55.	2.6	6
5	Functional validation of CHMP7 as an ADHD risk gene. Translational Psychiatry, 2020, 10, 385.	2.4	11
6	Impact of CYP2C19 genotype-predicted enzyme activity on hippocampal volume, anxiety, and depression. Psychiatry Research, 2020, 288, 112984.	1.7	6
7	Generation of four iPSC lines from peripheral blood mononuclear cells (PBMCs) of an attention deficit hyperactivity disorder (ADHD) individual and a healthy sibling in an Australia-Caucasian family. Stem Cell Research, 2019, 34, 101353.	0.3	11
8	Trends in the Overlap of Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder: Prevalence, Clinical Management, Language and Genetics. Current Developmental Disorders Reports, 2018, 5, 49-57.	0.9	13
9	Allelic variation in dopamine D2 receptor gene is associated with attentional impulsiveness on the Barratt Impulsiveness Scale (BIS-11). World Journal of Biological Psychiatry, 2018, 19, S75-S83.	1.3	6
10	The role of cadherin genes in five major psychiatric disorders: A literature update. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 168-180.	1.1	45
11	A Genetic Investigation of Sex Bias in the Prevalence of Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2018, 83, 1044-1053.	0.7	146
12	A case–control genome-wide association study of ADHD discovers a novel association with the tenascin R (TNR) gene. Translational Psychiatry, 2018, 8, 284.	2.4	20
13	Genome-wide association study reveals novel genetic locus associated with intra-individual variability in response time. Translational Psychiatry, 2018, 8, 207.	2.4	11
14	Rare DNA variants in the brain-derived neurotrophic factor gene increase risk for attention-deficit hyperactivity disorder: a next-generation sequencing study. Molecular Psychiatry, 2017, 22, 580-584.	4.1	30
15	Separating the wheat from the chaff: systematic identification of functionally relevant noncoding variants in ADHD. Molecular Psychiatry, 2016, 21, 1589-1598.	4.1	7
16	The molecular genetic architecture of attention deficit hyperactivity disorder. Molecular Psychiatry, 2015, 20, 289-297.	4.1	191
17	An association between a dopamine transporter gene (<i>SLC6A3</i>) haplotype and ADHD symptom measures in nonclinical adults. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 89-96.	1.1	15
18	Identification and functional characterisation of a novel dopamine beta hydroxylase gene variant associated with attention deficit hyperactivity disorder. World Journal of Biological Psychiatry, 2015, 16, 610-618.	1.3	11

#	Article	IF	CITATIONS
19	Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. Molecular Psychiatry, 2014, 19, 294-301.	4.1	188
20	Alpha-2A adrenergic receptor gene variants are associated with increased intra-individual variability in response time. Molecular Psychiatry, 2014, 19, 1031-1036.	4.1	24
21	Dopamine Transporter Genotype Is Associated with a Lateralized Resistance to Distraction during Attention Selection. Journal of Neuroscience, 2014, 34, 15743-15750.	1.7	13
22	A high density linkage disequilibrium mapping in 14 noradrenergic genes: evidence of association between SLC6A2, ADRA1B and ADHD. Psychopharmacology, 2013, 225, 895-902.	1.5	30
23	Human amygdala volume is predicted by common DNA variation in the stathmin and serotonin transporter genes. Translational Psychiatry, 2013, 3, e283-e283.	2.4	10
24	Norepinephrine Genes Predict Response Time Variability and Methylphenidate-Induced Changes in Neuropsychological Function in Attention Deficit Hyperactivity Disorder. Journal of Clinical Psychopharmacology, 2013, 33, 356-362.	0.7	21
25	Methylphenidate Side Effect Profile Is Influenced by Genetic Variation in the Attention-Deficit/Hyperactivity Disorder-Associated CES1 Gene. Journal of Child and Adolescent Psychopharmacology, 2013, 23, 655-664.	0.7	29
26	DNA Variation in the SNAP25 Gene Confers Risk to ADHD and Is Associated with Reduced Expression in Prefrontal Cortex. PLoS ONE, 2013, 8, e60274.	1.1	44
27	Investigating the Contribution of Common Genetic Variants to the Risk and Pathogenesis of ADHD. American Journal of Psychiatry, 2012, 169, 186-194.	4.0	174
28	Genome-Wide Analysis of Copy Number Variants in Attention Deficit Hyperactivity Disorder: The Role of Rare Variants and Duplications at 15q13.3. American Journal of Psychiatry, 2012, 169, 195-204.	4.0	242
29	Dopamine transporter genotype predicts behavioural and neural measures of response inhibition. Molecular Psychiatry, 2012, 17, 1086-1092.	4.1	60
30	Epistasis between neurochemical gene polymorphisms and risk for ADHD. European Journal of Human Genetics, 2011, 19, 577-582.	1.4	11
31	fMRI activation during response inhibition and error processing: The role of the DAT1 gene in typically developing adolescents and those diagnosed with ADHD. Neuropsychologia, 2011, 49, 1641-1650.	0.7	53
32	Allelic expression imbalance of the schizophrenia susceptibility gene CHI3L1. Psychiatric Genetics, 2011, 21, 281-286.	0.6	2
33	ADHD and DAT1: Further evidence of paternal overâ€transmission of risk alleles and haplotype. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 97-102.	1.1	26
34	Haplotype association of calpain 10 gene variants with type 2 diabetes mellitus in an Irish sample. Irish Journal of Medical Science, 2010, 179, 269-272.	0.8	5
35	Polymorphisms of the steroid sulfatase (STS) gene are associated with attention deficit hyperactivity disorder and influence brain tissue mRNA expression. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1417-1424.	1.1	27
36	Functional analysis of intron 8 and 3′ UTR variable number of tandem repeats of SLC6A3: differential activity of intron 8 variants. Pharmacogenomics Journal, 2010, 10, 442-447.	0.9	23

#	Article	IF	CITATIONS
37	Case-Control Genome-Wide Association Study of Attention-Deficit/Hyperactivity Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2010, 49, 906-920.	0.3	150
38	Evidence that genetic variation in the oxytocin receptor (OXTR) gene influences social cognition in ADHD. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 697-702.	2.5	75
39	Replication of an association of a promoter polymorphism of the dopamine transporter gene and Attention Deficit Hyperactivity Disorder. Neuroscience Letters, 2009, 462, 179-181.	1.0	15
40	Apolipoprotein E promoter polymorphisms (â^'491A/T and â^'427T/C) and Alzheimer's disease: no evidence of association in the Irish population. Irish Journal of Medical Science, 2008, 177, 29-33.	0.8	6
41	Differential dopamine receptor D4 allele association with ADHD dependent of proband season of birth. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 94-99.	1.1	20
42	Parent of origin effects in attention/deficit hyperactivity disorder (ADHD): Analysis of data from the international multicenter ADHD genetics (IMAGE) program. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1495-1500.	1.1	25
43	Absence of the 7â€repeat variant of the DRD4 VNTR is associated with drifting sustained attention in children with ADHD but not in controls. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 927-937.	1.1	62
44	Replication of a rare protective allele in the noradrenaline transporter gene and ADHD. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1564-1567.	1.1	26
45	Association of the steroid sulfatase (<i>STS</i>) gene with attention deficit hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1531-1535.	1.1	59
46	Creativity, psychosis, autism, and the social brain. Behavioral and Brain Sciences, 2008, 31, 268-269.	0.4	1
47	Spatial Attentional Bias as a Marker of Genetic Risk, Symptom Severity, and Stimulant Response in ADHD. Neuropsychopharmacology, 2008, 33, 2536-2545.	2.8	41
48	Protein kinase C-beta 1 gene variants are not associated with autism in the Irish population. Psychiatric Genetics, 2007, 17, 39-41.	0.6	5
49	No association between TPH2 gene polymorphisms and ADHD in a UK sample. Neuroscience Letters, 2007, 412, 105-107.	1.0	23
50	Dopaminergic genotype biases spatial attention in healthy children. Molecular Psychiatry, 2007, 12, 786-792.	4.1	52
51	Reply to Joober and Sengupta. American Journal of Human Genetics, 2006, 79, 766-768.	2.6	1
52	The Cognitive Genetics of Attention Deficit Hyperactivity Disorder (ADHD): Sustained attention as a Candidate Phenotype. Cortex, 2006, 42, 838-845.	1.1	88
53	Impaired Temporal Resolution of Visual Attention and Dopamine Beta Hydroxylase Genotype in Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2006, 60, 1039-1045.	0.7	21
54	An Overview of the Pharmacogenetics and Molecular Genetics of ADHD. Current Pharmacogenomics and Personalized Medicine: the International Journal for Expert Reviews in Pharmacogenomics, 2006, 4, 231-243.	0.3	7

#	Article	IF	CITATIONS
55	Association of the paternally transmitted copy of common Valine allele of the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene with susceptibility to ADHD. Molecular Psychiatry, 2005, 10, 939-943.	4.1	111
56	Tryptophan hydroxylase 2 (TPH2) gene variants associated with ADHD. Molecular Psychiatry, 2005, 10, 944-949.	4.1	113
57	Dissecting the attention deficit hyperactivity disorder (ADHD) phenotype: Sustained attention, response variability and spatial attentional asymmetries in relation to dopamine transporter (DAT1) genotype. Neuropsychologia, 2005, 43, 1847-1857.	0.7	188
58	Association analysis of the monoamine oxidase A and B genes with attention deficit hyperactivity disorder (ADHD) in an Irish sample: Preferential transmission of the MAO-A 941G allele to affected children. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 134B, 110-114.	1.1	66
59	DRD4gene variants and sustained attention in attention deficit hyperactivity disorder (ADHD): Effects of associated alleles at the VNTR and â~'521 SNP. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 136B, 81-86.	1.1	84
60	The methionine allele of the COMT polymorphism impairs prefrontal cognition in children and adolescents with ADHD. Experimental Brain Research, 2005, 163, 352-360.	0.7	80
61	Association between Dopamine Transporter (DAT1) Genotype, Left-Sided Inattention, and an Enhanced Response to Methylphenidate in Attention-Deficit Hyperactivity Disorder. Neuropsychopharmacology, 2005, 30, 2290-2297.	2.8	85
62	Preferential Transmission of Paternal Alleles at Risk Genes in Attention-Deficit/Hyperactivity Disorder. American Journal of Human Genetics, 2005, 77, 958-965.	2.6	100
63	Multiple marker analysis at the promoter region of theDRD4 gene and ADHD: Evidence of linkage and association with the SNP ?616. American Journal of Medical Genetics Part A, 2004, 131B, 33-37.	2.4	45
64	Phenotype studies of theDRD4 gene polymorphisms in ADHD: Association with oppositional defiant disorder and positive family history. American Journal of Medical Genetics Part A, 2004, 131B, 38-42.	2.4	64
65	Joint Analysis of the DRD5 Marker Concludes Association with Attention-Deficit/Hyperactivity Disorder Confined to the Predominantly Inattentive and Combined Subtypes. American Journal of Human Genetics, 2004, 74, 348-356.	2.6	168
66	Late onset Alzheimer's disease and apolipoprotein association in the Irish population: Relative risk and attributable fraction. Irish Journal of Medical Science, 2003, 172, 74-76.	0.8	10
67	Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. American Journal of Medical Genetics Part A, 2003, 121B, 50-54.	2.4	130
68	Linkage disequilibrium mapping at DAT1, DRD5 and DBH narrows the search for ADHD susceptibility alleles at these loci. Molecular Psychiatry, 2003, 8, 299-308.	4.1	128
69	Recent genetic advances in ADHD and diagnostic and therapeutic prospects. Expert Review of Neurotherapeutics, 2003, 3, 453-464.	1.4	9
70	Dopaminergic System Genes in ADHD Toward a Biological Hypothesis. Neuropsychopharmacology, 2002, 27, 607-19.	2.8	147
71	Association of DRD4 in children with ADHD and comorbid conduct problems. American Journal of Medical Genetics Part A, 2002, 114, 150-153.	2.4	109
72	No evidence of linkage or association between the norepinephrine transporter (NET) gene polymorphisms and ADHD in the Irish population. American Journal of Medical Genetics Part A, 2002, 114, 665-666.	2.4	49

#	Article	IF	CITATIONS
73	Serotonergic system and attention deficit hyperactivity disorder (ADHD): a potential susceptibility locus at the 5-HT1B receptor gene in 273 nuclear families from a multi-centre sample. Molecular Psychiatry, 2002, 7, 718-725.	4.1	148
74	Synaptosomal-associated protein 25 (SNAP-25) and attention deficit hyperactivity disorder (ADHD): evidence of linkage and association in the Irish population. Molecular Psychiatry, 2002, 7, 913-917.	4.1	142
75	Evidence that variation at the serotonin transporter gene influences susceptibility to attention deficit hyperactivity disorder (ADHD): analysis and pooled analysis. Molecular Psychiatry, 2002, 7, 908-912.	4.1	150
76	Nicotinic acetylcholine receptor α4 subunit gene polymorphism and attention deficit hyperactivity disorder. Psychiatric Genetics, 2001, 11, 37-40.	0.6	64
77	No evidence of linkage or association between ADHD and DXS7 locus in Irish population. American Journal of Medical Genetics Part A, 2001, 105, 394-395.	2.4	10
78	No association between CHRNA7 microsatellite markers and attention-deficit hyperactivity disorder. American Journal of Medical Genetics Part A, 2001, 105, 686-689.	2.4	28
79	Dopa decarboxylase gene polymorphisms and attention deficit hyperactivity disorder (ADHD): no evidence for association in the Irish population. Molecular Psychiatry, 2001, 6, 420-424.	4.1	34
80	No association of the dopamine DRD4 receptor (DRD4) gene polymorphism with attention deficit hyperactivity disorder (ADHD) in the Irish population. American Journal of Medical Genetics Part A, 2000, 96, 268-272.	2.4	89
81	No association between catechol-O-methyltransferase (COMT) gene polymorphism and attention deficit hyperactivity disorder (ADHD) in an Irish sample. American Journal of Medical Genetics Part A, 2000, 96, 282-284.	2.4	55
82	Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children. Molecular Psychiatry, 1999, 4, 192-196.	4.1	374
83	No evidence to support the association of the potassium channel gene hSKCa3 CAG repeat with schizophrenia or bipolar disorder in the Irish population. Molecular Psychiatry, 1999, 4, 488-491.	4.1	25
84	Presenilin 1 and ?-1-antichymotrypsin polymorphisms in down syndrome: No effect on the presence of dementia. , 1999, 88, 616-620.		6
85	MDMA toxicity: no evidence for a major influence of metabolic genotype at CYP2D6. Addiction Biology, 1998, 3, 309-314.	1.4	25
86	Examination of new and reported data of the DRD3/MscI polymorphism: no support for the proposed association with schizophrenia. Molecular Psychiatry, 1998, 3, 150-155.	4.1	32
87	European multicentre association study of schizophrenia: a study of the DRD2 Ser311Cys and DRD3 Ser9Gly polymorphisms. , 1998, 81, 24-28.		75
88	National scientific medical meeting 1997 abstracts. Irish Journal of Medical Science, 1998, 167, 1-44.	0.8	0
89	No linkage or linkage disequilibrium between brain-derived neurotrophic factor (BDNF) dinucleotide repeat polymorphism and schizophrenia in Irish families. Psychiatry Research, 1998, 81, 111-116.	1.7	66
90	A Protective Effect of Apolipoprotein E e2 Allele on Dementia in Down's Syndrome. Biological Psychiatry, 1998, 43, 397-400.	0.7	33

Ziarih Hawi

#	Article	IF	CITATIONS
91	Homozygous mutation at cytochrome P4502D6 in an individual with schizophrenia: Implications for antipsychotic drugs, side effects and compliance. Irish Journal of Psychological Medicine, 1997, 14, 38-39.	0.7	7
92	Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Molecular Psychiatry, 1997, 2, 311-313.	4.1	449
93	Lower frequency of apolipoprotein E4 allele in an "elderly―Down's syndrome population. Biological Psychiatry, 1996, 40, 811-813.	0.7	9
94	Neurotrophin-3 gene polymorphisms and schizophrenia. Psychiatric Genetics, 1996, 6, 183-186.	0.6	16