Gabriela Lopez-Gonzalez

List of Publications by Citations

Source: https://exaly.com/author-pdf/2784902/gabriela-lopez-gonzalez-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

6,122 26 31 35 h-index g-index citations papers 12.6 3.83 7,517 35 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
31	Drought sensitivity of the Amazon rainforest. <i>Science</i> , 2009 , 323, 1344-7	33.3	1213
30	Increasing carbon storage in intact African tropical forests. <i>Nature</i> , 2009 , 457, 1003-6	50.4	714
29	Hyperdominance in the Amazonian tree flora. <i>Science</i> , 2013 , 342, 1243092	33.3	637
28	Drought-mortality relationships for tropical forests. <i>New Phytologist</i> , 2010 , 187, 631-46	9.8	400
27	TRY plant trait database - enhanced coverage and open access. <i>Global Change Biology</i> , 2020 , 26, 119-18	8811.4	399
26	An integrated pan-tropical biomass map using multiple reference datasets. <i>Global Change Biology</i> , 2016 , 22, 1406-20	11.4	358
25	Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. <i>Global Ecology and Biogeography</i> , 2014 , 23, 935-946	6.1	205
24	Above-ground biomass and structure of 260 African tropical forests. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2013 , 368, 20120295	5.8	204
23	Asynchronous carbon sink saturation in African and Amazonian tropical forests. <i>Nature</i> , 2020 , 579, 80-8	8 7 50.4	202
22	The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. <i>Journal of Vegetation Science</i> , 2011 , 22, 582-597	3.1	178
21	Diversity and carbon storage across the tropical forest biome. <i>Scientific Reports</i> , 2017 , 7, 39102	4.9	177
20	Compositional response of Amazon forests to climate change. <i>Global Change Biology</i> , 2019 , 25, 39-56	11.4	158
19	Hyperdominance in Amazonian forest carbon cycling. <i>Nature Communications</i> , 2015 , 6, 6857	17.4	157
18	Size and frequency of natural forest disturbances and the Amazon forest carbon balance. <i>Nature Communications</i> , 2014 , 5, 3434	17.4	128
17	ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. <i>Journal of Vegetation Science</i> , 2011 , 22, 610-613	3.1	126
16	sPlot 🖪 new tool for global vegetation analyses. <i>Journal of Vegetation Science</i> , 2019 , 30, 161-186	3.1	96
15	Seasonal drought limits tree species across the Neotropics. <i>Ecography</i> , 2017 , 40, 618-629	6.5	93

LIST OF PUBLICATIONS

14	Long-term thermal sensitivity of Earthos tropical forests. <i>Science</i> , 2020 , 368, 869-874	33.3	92
13	Species Distribution Modelling: Contrasting presence-only models with plot abundance data. <i>Scientific Reports</i> , 2018 , 8, 1003	4.9	78
12	Long-term carbon sink in Borneos forests halted by drought and vulnerable to edge effects. <i>Nature Communications</i> , 2017 , 8, 1966	17.4	77
11	Disequilibrium and hyperdynamic tree turnover at the forestderrado transition zone in southern Amazonia. <i>Plant Ecology and Diversity</i> , 2014 , 7, 281-292	2.2	70
10	Methods to estimate aboveground wood productivity from long-term forest inventory plots. <i>Forest Ecology and Management</i> , 2014 , 320, 30-38	3.9	62
9	Tropical forest wood production: a cross-continental comparison. <i>Journal of Ecology</i> , 2014 , 102, 1025-10	087	58
8	Phylogenetic diversity of Amazonian tree communities. <i>Diversity and Distributions</i> , 2015 , 21, 1295-1307	5	56
7	Field methods for sampling tree height for tropical forest biomass estimation. <i>Methods in Ecology and Evolution</i> , 2018 , 9, 1179-1189	7.7	53
6	Fast demographic traits promote high diversification rates of Amazonian trees. <i>Ecology Letters</i> , 2014 , 17, 527-36	10	48
5	Tree mode of death and mortality risk factors across Amazon forests. <i>Nature Communications</i> , 2020 , 11, 5515	17.4	24
4	The persistence of carbon in the African forest understory. <i>Nature Plants</i> , 2019 , 5, 133-140	11.5	19
3	Shifting dynamics of climate-functional groups in old-growth Amazonian forests. <i>Plant Ecology and Diversity</i> , 2014 , 7, 267-279	2.2	18
2	Evolutionary diversity is associated with wood productivity in Amazonian forests. <i>Nature Ecology and Evolution</i> , 2019 , 3, 1754-1761	12.3	17
1	Dinthica, biomasa atlea y composiciti flortitica en parcelas permanentes Reserva Nacional Tambopata, Madre de Dios, Perll <i>Revista Peruana De Biologia</i> , 2014 , 21,	1.2	4