List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2784719/publications.pdf Version: 2024-02-01

Ιωροι Ρωλτερ

#	Article	IF	CITATIONS
1	Path-dependency of energy decomposition analysis & the elusive nature of bonding. Physical Chemistry Chemical Physics, 2022, 24, 2344-2348.	2.8	27
2	C(<i>sp</i> ⁿ)â^'X (n=1–3) Bond Activation by Palladium. Chemistry - A European Journal, 2022, 28, .	3.3	7
3	Probing the Lewis Acidity of Boronic Acids through Interactions with Arene Substituents. Chemistry - A European Journal, 2022, 28, .	3.3	8
4	Rational design of iron catalysts for C $\hat{a} {\in} `` X$ bond activation. Journal of Computational Chemistry, 2022, , .	3.3	7
5	Aromaticity and Extrusion of Benzenoids Linked to [<i>o</i> â€COSAN] ^{â^'} : Clar Has the Answer. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
6	Reading and erasing of the phosphonium analogue of trimethyllysine by epigenetic proteins. Communications Chemistry, 2022, 5, .	4.5	5
7	Câ^'X Bond Activation by Palladium: Steric Shielding versus Steric Attraction. Chemistry - A European Journal, 2022, 28, .	3.3	11
8	Probing Noncovalent Interactions in [3,3]Metaparacyclophanes. Journal of Organic Chemistry, 2022, 87, 6087-6096.	3.2	2
9	Through-Space Stabilization of an Imidazolium Cation by Aromatic Rings. Journal of Organic Chemistry, 2022, 87, 7875-7883.	3.2	2
10	3D and 2D aromatic units behave like oil and water in the case of benzocarborane derivatives. Nature Communications, 2022, 13, .	12.8	23
11	Bismutamide als einfache Vermittler hochselektiver Pnâ~'Pnâ€Radikalâ€Kupplungsreaktionen (Pn=N, P, As). Angewandte Chemie, 2021, 133, 6513-6518.	2.0	7
12	Bismuth Amides Mediate Facile and Highly Selective Pn–Pn Radical oupling Reactions (Pn=N, P, As). Angewandte Chemie - International Edition, 2021, 60, 6441-6445.	13.8	36
13	The energy components of the extended transition state energy decomposition analysis are path functions: the case of water tetramer. Theoretical Chemistry Accounts, 2021, 140, 1.	1.4	8
14	Do Sulfonamides Interact with Aromatic Rings?. Chemistry - A European Journal, 2021, 27, 5721-5729.	3.3	7
15	Chelation enforcing a dual gold configuration in the catalytic hydroxyphenoxylation of alkynes. Applied Organometallic Chemistry, 2021, 35, e6362.	3.5	5
16	Pyrrole and Pyridine in the Water Environment—Effect of Discrete and Continuum Solvation Models. ACS Omega, 2021, 6, 24693-24699.	3.5	4
17	Cage [–] ···Cage [–] Interaction: Boron Cluster-Based Noncovalent Bond and Its Applications in Solid-State Materials. Jacs Au, 2021, 1, 2047-2057.	7.9	5
18	The Chemical Bond: When Atom Size Instead of Electronegativity Difference Determines Trend in Bond Strength. Chemistry - A European Journal, 2021, 27, 15616-15622.	3.3	26

#	Article	IF	CITATIONS
19	Zwitterionic Aromaticity on Azulene Extrapolated to <i>carbo</i> â€Azulene. European Journal of Organic Chemistry, 2021, 2021, 6450-6458.	2.4	5
20	Phenoxylation of Alkynes through Mono―and Dual Activation Using Group 11 (Cu, Ag, Au) Catalysts. European Journal of Inorganic Chemistry, 2020, 2020, 1123-1134.	2.0	7
21	Activation Strain Analyses of Counterion and Solvent Effects on the Ionâ€Pair S N 2 Reaction of and CH 3 Cl. Journal of Computational Chemistry, 2020, 41, 317-327.	3.3	4
22	Distortion ontrolled Redshift of Organic Dye Molecules. Chemistry - A European Journal, 2020, 26, 2080-2093.	3.3	12
23	Probing Halogenâ^ï€ versus CHâ~ï€ Interactions in Molecular Balance. Organic Letters, 2020, 22, 7870-7873.	4.6	11
24	Analysis of the electronic delocalization in some isoelectronic analogues of B ₁₂ doped with beryllium and/or carbon. Physical Chemistry Chemical Physics, 2020, 22, 12245-12259.	2.8	12
25	Cyclopropenylidenephosphoranes: Rearrangement to Azetidinylidene-Methylphosphoniums. Journal of Organic Chemistry, 2020, 85, 7452-7458.	3.2	2
26	Mechanism of biomolecular recognition of trimethyllysine by the fluorinated aromatic cage of KDM5A PHD3 finger. Communications Chemistry, 2020, 3, .	4.5	13
27	Throughâ€Space Polarâ€i€ Interactions in 2,6â€Diarylthiophenols. ChemPhysChem, 2020, 21, 1080-1080.	2.1	0
28	The nido ageâ‹â‹ï€ Bond: A Nonâ€covalent Interaction between Boron Clusters and Aromatic Rings ar Applications. Angewandte Chemie, 2020, 132, 9103-9110.	id Its 2.0	7
29	The <i>nido</i> â€Cageâ<â<ï€ Bond: A Nonâ€covalent Interaction between Boron Clusters and Aromatic Ri and Its Applications. Angewandte Chemie - International Edition, 2020, 59, 9018-9025.	ngs 13.8	32
30	Throughâ€Space Polarâ€ï€ Interactions in 2,6â€Diarylthiophenols. ChemPhysChem, 2020, 21, 1092-1100.	2.1	9
31	Comparison of Molecular Recognition of Trimethyllysine and Trimethylthialysine by Epigenetic Reader Proteins. Molecules, 2020, 25, 1918.	3.8	8
32	Too Persistent to Give Up: Aromaticity in Boron Clusters Survives Radical Structural Changes. Journal of the American Chemical Society, 2020, 142, 9396-9407.	13.7	145
33	PyFrag 2019—Automating the exploration and analysis of reaction mechanisms. Journal of Computational Chemistry, 2019, 40, 2227-2233.	3.3	57
34	Carbon monoxide insertion at a heavy p-block element: unprecedented formation of a cationic bismuth carbamoyl. Chemical Science, 2019, 10, 4169-4176.	7.4	59
35	<i>>para</i> -Selective C–H Olefination of Aniline Derivatives via Pd/S,O-Ligand Catalysis. Journal of the American Chemical Society, 2019, 141, 6719-6725.	13.7	108
36	Open-shell jellium aromaticity in metal clusters. Chemical Communications, 2019, 55, 5559-5562.	4.1	15

#	Article	IF	CITATIONS
37	Probing Through-Space Polarâ^'Ï€ Interactions in 2,6-Diarylphenols. Journal of Organic Chemistry, 2019, 84, 3632-3637.	3.2	11
38	Understanding the differences between iron and palladium in cross-coupling reactions. Physical Chemistry Chemical Physics, 2019, 21, 9651-9664.	2.8	12
39	52 GAMES WITH THE PERIODIC TABLE AND BEYOND. , 2019, , .		0
40	Recognition of shorter and longer trimethyllysine analogues by epigenetic reader proteins. Chemical Communications, 2018, 54, 2409-2412.	4.1	15
41	Doppelte CHâ€Aktivierung eines maskierten Bismutamidâ€Kations. Angewandte Chemie, 2018, 130, 3887-3891.	2.0	25
42	Double CH Activation of a Masked Cationic Bismuth Amide. Angewandte Chemie - International Edition, 2018, 57, 3825-3829.	13.8	66
43	Aromaticity Determines the Relative Stability of Kinked vs. Straight Topologies in Polycyclic Aromatic Hydrocarbons. Frontiers in Chemistry, 2018, 6, 561.	3.6	41
44	Rational design of nearâ€infrared absorbing organic dyes: Controlling the HOMO–LUMO gap using quantitative molecular orbital theory. Journal of Computational Chemistry, 2018, 39, 2690-2696.	3.3	26
45	Covalent and Ionic Capacity of MOFs To Sorb Small Gas Molecules. Inorganic Chemistry, 2018, 57, 6981-6990.	4.0	55
46	B-DNA model systems in non-terran bio-solvents: implications for structure, stability and replication. Physical Chemistry Chemical Physics, 2017, 19, 16969-16978.	2.8	25
47	Kekulene: Structure, stability and nature of H••A €¢A€¢H interactions in large PAHs. Molecular Astrophysics, 2017, 8, 19-26.	1.6	17
48	Nature of the Ruâ^'NO Coordination Bond: Kohn–Sham Molecular Orbital and Energy Decomposition Analysis. ChemistryOpen, 2017, 6, 410-416.	1.9	11
49	Silyleneâ€Induced Reduction of [Mn ₂ (CO) ₁₀]: Formation of a Five oordinate Silicon(IV) Complex with an Oâ€Bound [(OC) ₄ Mn=Mn(CO) ₄] ^{2–} Ligand. European Journal of Inorganic Chemistry, 2017, 2017, 186-191.	2.0	7
50	Testing the effectiveness of the isoelectronic substitution principle through the transformation of aromatic osmathiophene derivatives into their inorganic analogues. New Journal of Chemistry, 2017, 41, 1168-1178.	2.8	9
51	Stabilization of 2,6-Diarylanilinum Cation by Through-Space Cationâ^'Ï€ Interactions. Journal of Organic Chemistry, 2017, 82, 9418-9424.	3.2	18
52	Formation of a Trifluorophosphane Platinum(II) Complex by Pâ^ F Bond Activation of Phosphorus Pentafluoride with a Pt ⁰ Complex. Chemistry - A European Journal, 2017, 23, 5948-5952.	3.3	14
53	Reaction Mechanism and Regioselectivity of the Bingel–Hirsch Addition of Dimethyl Bromomalonate to La@ <i>C</i> _{2<i>v</i>} ₈₂ . Chemistry - A European Journal, 2016, 22, 5953-5962.	3.3	23
54	Rules of Aromaticity. Challenges and Advances in Computational Chemistry and Physics, 2016, , 321-335.	0.6	7

#	Article	IF	CITATIONS
55	Planar <i>>vs.</i> three-dimensional X ₆ ^{2â[^]} , X ₂ Y ₄ ^{2â[^]} , and X ₃ Y ₃ ^{2â[^]} (X, Y = B,) Physical Chemistry Chemical Physics, 2016, 18, 21102-21110.	Tj ETQq1	1,0.784314
56	Exploring the validity of the Glidewell–Lloyd extension of Clar's π-sextet rule: assessment from polycyclic conjugated hydrocarbons. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	24
57	Hückel's Rule of Aromaticity Categorizes Aromatic <i>closo</i> Boron Hydride Clusters. Chemistry - A European Journal, 2016, 22, 7437-7443.	3.3	103
58	Synthesis and Hydrolysis of Alkoxy(aminoalkyl)diorganylsilanes of the Formula Type R2(RO)Si(CH2)nNH2(R = Alkyl,n= 1-3): A Systematic Experimental and Computational Study. European Journal of Inorganic Chemistry, 2016, 2016, 1641-1659.	2.0	3
59	Complexes of adamantaneâ€based group 13 Lewis acids and superacids: Bonding analysis and thermodynamics of hydrogen splitting. Journal of Computational Chemistry, 2016, 37, 1355-1362.	3.3	10
60	Fmoc–RGDS based fibrils: atomistic details of their hierarchical assembly. Physical Chemistry Chemical Physics, 2016, 18, 1265-1278.	2.8	17
61	Octahedral aromaticity in ^{2S+1} A _{1g} X ₆ ^q clusters (X =) Tj ETQ	q110.78 2.8	4314 rgBT 12
62	How carbo-benzenes fit molecules in their inner core as do biologic ion carriers?. Structural Chemistry, 2016, 27, 249-259.	2.0	6
63	Reactivity of the Donorâ€Stabilized Silylenes [<i>i</i> PrNC(Ph)N <i>i</i> Pr] ₂ Si and [<i>i</i> PrNC(N <i>i</i> Pr ₂)N <i>i</i> Pr] ₂ Si: Activation of CO ₂ and CS ₂ . Chemistry - A European Journal, 2015, 21, 16665-16672.	3.3	49
64	Stable Four oordinate Guanidinatosilicon(IV) Complexes with SiN 3 El Skeletons (El=S, Se, Te) and SiEl Double Bonds. Chemistry - A European Journal, 2015, 21, 14011-14021.	3.3	29
65	The Missing Entry in the Agostic–Anagostic Series: Rh(I)–η ¹ -C Interactions in P(CH)P Pincer Complexes. Inorganic Chemistry, 2015, 54, 2960-2969.	4.0	46
66	Why 1,2-quinone derivatives are more stable than their 2,3-analogues?. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	16
67	Quantifying aromaticity with electron delocalisation measures. Chemical Society Reviews, 2015, 44, 6434-6451.	38.1	335
68	Chemical basis for the recognition of trimethyllysine by epigenetic reader proteins. Nature Communications, 2015, 6, 8911.	12.8	72
69	B-DNA structure and stability: the role of hydrogen bonding, π–π stacking interactions, twist-angle, and solvation. Organic and Biomolecular Chemistry, 2014, 12, 4691-4700.	2.8	64
70	Ï€â€Aromaticity and Threeâ€Dimensional Aromaticity: Two sides of the Same Coin?. Angewandte Chemie - International Edition, 2014, 53, 12191-12195.	13.8	242
71	Electroactive polymers for the detection of morphine. Journal of Polymer Research, 2014, 21, 1.	2.4	6
72	Aromaticity and Magnetic Properties of 1―and 2â€Indenones and Their Aza Derivatives. European Journal of Organic Chemistry, 2014, 2014, 5370-5377.	2.4	9

#	Article	IF	CITATIONS
73	Analysis of the Aromaticity of Five-Membered Heterometallacycles Containing Os, Ru, Rh, and Ir. Organometallics, 2014, 33, 1762-1773.	2.3	31
74	Aromatic properties of 8-hydroxyquinoline and its metal complexes. Open Chemistry, 2013, 11, 655-663.	1.9	8
75	Comparison between Alkalimetal and Group 11 Transition Metal Halide and Hydride Tetramers: Molecular Structure and Bonding. Journal of Physical Chemistry A, 2013, 117, 8026-8034.	2.5	9
76	Unraveling the Origin of the Relative Stabilities of Group 14 M ₂ N ₂ ²⁺ (M, N = C, Si, Ge, Sn, and Pb) Isomer Clusters. Journal of Physical Chemistry A, 2013, 117, 10462-10469.	2.5	13
77	X ₂ Y ₂ Isomers: Tuning Structure and Relative Stability through Electronegativity Differences (X = H, Li, Na, F, Cl, Br, I; Y = O, S, Se, Te). Inorganic Chemistry, 2013, 52, 2458-2465.	4.0	16
78	Analysis of the Relative Stabilities of Ortho, Meta, and Para MClY(XC ₄ H ₄)(PH ₃) ₂ Heterometallabenzenes (M = Rh,) Tj	ETQ д0 00	rg B J6/Overloo
79	Examining the formation of specific interactions between poly(3,4-ethylenedioxythiophene) and nucleotide bases. RSC Advances, 2013, 3, 2639.	3.6	7
80	Metalloaromaticity. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2013, 3, 105-122.	14.6	105
81	A Simple Link between Hydrocarbon and Borohydride Chemistries. Chemistry - A European Journal, 2013, 19, 4169-4175.	3.3	40
82	Molecular structures of M2N22â^' (M and N = B, Al, and Ga) clusters using the gradient embedded genetic algorithm. Physical Chemistry Chemical Physics, 2012, 14, 14850.	2.8	18
83	On the electronic structure of second generation Hoveyda–Grubbs alkene metathesis precursors. Computational and Theoretical Chemistry, 2012, 996, 57-67.	2.5	21
84	Solvent effects on hydrogen bonds in Watson–Crick, mismatched, and modified DNA base pairs. Computational and Theoretical Chemistry, 2012, 998, 57-63.	2.5	32
85	Properties of poly(3-halidethiophene)s. Physical Chemistry Chemical Physics, 2012, 14, 10050.	2.8	8
86	Open-shell spherical aromaticity: the 2N2 + 2N + 1 (with S = N + \hat{A} ½) rule. Chemical Communications, 2011, 47, 11647.	4.1	49
87	A donor-functionalized, silyl-substituted pentadienyllithium: structural insight from experiment and theory. Chemical Communications, 2011, 47, 6162.	4.1	14
88	All-metal aromatic clusters M42â^' (M = B, Al, and Ga). Are Ï€-electrons distortive or not?. Physical Chemistry Chemical Physics, 2011, 13, 20673.	2.8	14
89	Understanding Conjugation and Hyperconjugation from Electronic Delocalization Measures. Journal of Physical Chemistry A, 2011, 115, 13104-13113.	2.5	30
90	Routes of π-Electron Delocalization in 4-Substituted-1,2-benzoquinones. Journal of Organic Chemistry, 2011, 76, 550-556.	3.2	15

#	Article	IF	CITATIONS
91	An Analysis of the Isomerization Energies of 1,2-/1,3-Diazacyclobutadiene, Pyrazole/Imidazole, and Pyridazine/Pyrimidine with the Turn-Upside-Down Approach. Journal of Organic Chemistry, 2011, 76, 8913-8921.	3.2	43
92	Binding of 6-mer single-stranded homo-nucleotides to poly(3,4-ethylenedioxythiophene): specific hydrogen bonds with guanine. Soft Matter, 2011, 7, 9922.	2.7	13
93	Ab Initio Design of Chelating Ligands Relevant to Alzheimer's Disease: Influence of Metalloaromaticity. Journal of Physical Chemistry A, 2011, 115, 12659-12666.	2.5	20
94	Analysis of the Effects ofN-Substituents on Some Aspects of the Aromaticity of Imidazoles and Pyrazoles. Journal of Physical Chemistry A, 2011, 115, 8571-8577.	2.5	46
95	Selectivity in DNA replication. Interplay of steric shape, hydrogen bonds, π-stacking and solvent effects. Chemical Communications, 2011, 47, 7326.	4.1	52
96	Aromaticity and electronic delocalization in all-metal clusters with single, double, and triple aromatic character. Theoretical Chemistry Accounts, 2011, 128, 419-431.	1.4	57
97	Theoretical studies on aromaticity of selected hydroxypyrones. Part 3#. Chelatoaromaticity phenomenon in metalcomplexes of hydroxypyrones. Journal of Physical Organic Chemistry, 2011, 24, 499-506.	1.9	16
98	Patterns of π-electron delocalization in aromatic and antiaromatic organic compounds in the light of Hückel's 4n + 2 rule. Physical Chemistry Chemical Physics, 2010, 12, 7126.	2.8	38
99	Adenine versus guanine quartets in aqueous solution: dispersion-corrected DFT study on the differences in π-stacking and hydrogen-bonding behavior. Theoretical Chemistry Accounts, 2010, 125, 245-252.	1.4	123
100	A Critical Assessment of the Performance of Magnetic and Electronic Indices of Aromaticity. Symmetry, 2010, 2, 1156-1179.	2.2	115
101	A Test to Evaluate the Performance of Aromaticity Descriptors in All-Metal and Semimetal Clusters. An Appraisal of Electronic and Magnetic Indicators of Aromaticity. Journal of Chemical Theory and Computation, 2010, 6, 1118-1130.	5.3	84
102	Examining the Planarity of Poly(3,4-ethylenedioxythiophene): Consideration of Self-Rigidification, Electronic, and Geometric Effects. Journal of Physical Chemistry A, 2010, 114, 1023-1028.	2.5	38
103	Alkali Metal Complexes of Silyl-Substitutedansa-(Tris)allyl Ligands: Metal-, Co-Ligand- and Substituent-Dependent Stereochemistry. European Journal of Inorganic Chemistry, 2009, 2009, 4157-4167.	2.0	15
104	Modeling the structureâ€property relationships of nanoneedles: A journey toward nanomedicine. Journal of Computational Chemistry, 2009, 30, 275-284.	3.3	76
105	Excess charge delocalization in organic and biological molecules: some theoretical notions. Theoretical Chemistry Accounts, 2009, 123, 29-40.	1.4	9
106	Aromaticity and Chemical Reactivity. , 2009, , .		5
107	Hypervalent versus Nonhypervalent Carbon in Nobleâ€Gas Complexes. Chemistry - A European Journal, 2008, 14, 6901-6911.	3.3	37
108	On the performance of some aromaticity indices: A critical assessment using a test set. Journal of Computational Chemistry, 2008, 29, 1543-1554.	3.3	261

#	Article	IF	CITATIONS
109	Analysis of Hückel's [4 <i>n</i> + 2] Rule through Electronic Delocalization Measures. Journal of Physical Chemistry A, 2008, 112, 13231-13238.	2.5	38
110	Chapter 10 Electronic structure and reactivity of aromatic metal clusters. Theoretical and Computational Chemistry, 2007, 19, 203-218.	0.4	0
111	New Solids Based on B ₁₂ N ₁₂ Fullerenes. Journal of Physical Chemistry C, 2007, 111, 13354-13360.	3.1	72
112	Aromaticity of Distorted Benzene Rings:  Exploring the Validity of Different Indicators of Aromaticity. Journal of Physical Chemistry A, 2007, 111, 4513-4521.	2.5	102
113	Didehydrophenanthrenes:  Structure, Singletâ^'Triplet Splitting, and Aromaticity. Journal of Physical Chemistry A, 2007, 111, 5063-5070.	2.5	39
114	Polycyclic Benzenoids:Â Why Kinked is More Stable than Straight. Journal of Organic Chemistry, 2007, 72, 1134-1142.	3.2	197
115	Aromaticity changes along the reaction coordinate connecting the cyclobutadiene dimer to cubane and the benzene dimer to hexaprismane. Structural Chemistry, 2007, 18, 773-783.	2.0	18
116	Role of Electron Density and Magnetic Couplings on the Nucleus-Independent Chemical Shift (NICS) Profiles of [2.2]Paracyclophane and Related Species. Journal of Organic Chemistry, 2006, 71, 1700-1702.	3.2	57
117	A trinuclear Pt(ii) compound with short Pt–Pt–Pt contacts. An analysis of the influence of ï€â€"ï€ stacking interactions on the strength and length of the Pt–Pt bond. Dalton Transactions, 2006, , 1188-1196.	3.3	70
118	Local Aromaticity in Natural Nucleobases and Their Size-Expanded Benzo-Fused Derivatives. Journal of Physical Chemistry A, 2006, 110, 12249-12258.	2.5	52
119	Bonding in Methylalkalimetals (CH3M)n(M = Li, Na, K;n= 1, 4). Agreement and Divergences between AIM and ELF Analysesâ€. Journal of Physical Chemistry B, 2006, 110, 7189-7198.	2.6	39
120	Are nucleus-independent (NICS) and 1H NMR chemical shifts good indicators of aromaticity in ï€-stacked polyfluorenes?. Chemical Physics Letters, 2006, 428, 191-195.	2.6	33
121	Analysis of Electron Delocalization in Aromatic Systems:  Individual Molecular Orbital Contributions to Para-Delocalization Indexes (PDI). Journal of Physical Chemistry A, 2006, 110, 11569-11574.	2.5	28
122	Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Functional (ELF) Topological Approaches. ChemInform, 2006, 37, no.	0.0	0
123	Hydrogen–Hydrogen Bonding in Planar Biphenyl, Predicted by Atoms-In-Molecules Theory, Does Not Exist. Chemistry - A European Journal, 2006, 12, 2889-2895.	3.3	314
124	A Model of the Chemical Bond Must Be Rooted in Quantum Mechanics, Provide Insight, and Possess Predictive Power. Chemistry - A European Journal, 2006, 12, 2902-2905.	3.3	216
125	Electron Fluctuation in Pericyclic and Pseudopericyclic Reactions. ChemPhysChem, 2006, 7, 111-113.	2.1	45
126	An analysis of the changes in aromaticity and planarity along the reaction path of the simplest Diels–Alder reaction. Exploring the validity of different indicators of aromaticity. Computational and Theoretical Chemistry, 2005, 727, 165-171.	1.5	59

#	Article	IF	CITATIONS
127	Local Aromaticity of [n]Acenes, [n]Phenacenes, and [n]Helicenes (n = 1â^'9). Journal of Organic Chemistry, 2005, 70, 2509-2521.	3.2	195
128	Aromaticity Analysis of Lithium Cation/ π Complexes of Aromatic Systems. ChemPhysChem, 2005, 6, 2552-2561.	2.1	46
129	Ab initio and DFT modeling of stereoselective deamination of aziridines by nitrosyl chloride. International Journal of Quantum Chemistry, 2005, 102, 139-146.	2.0	9
130	Assessment of Clar's aromatic π-sextet rule by means of PDI, NICS and HOMA indicators of local aromaticity. Journal of Physical Organic Chemistry, 2005, 18, 785-791.	1.9	147
131	Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches. Chemical Reviews, 2005, 105, 3911-3947.	47.7	661
132	Local Aromaticity of the Lowest-Lying Singlet States of [n]Acenes (n = 6â^'9). Journal of Physical Chemistry A, 2005, 109, 10629-10632.	2.5	68
133	Hydrogen bonding and aromaticity in the guanine–cytosine base pair interacting with metal cations (M = Cu+, Ca2+and Cu2+). Molecular Physics, 2005, 103, 163-173.	1.7	32
134	Comment on the "Nature of Bonding in the Thermal Cyclization of (Z)-1,2,4,6-Heptatetraene and Its Heterosubstituted Analogues― Journal of Physical Chemistry B, 2005, 109, 7591-7593.	2.6	17
135	Comparison of the AIM Delocalization Index and the Mayer and Fuzzy Atom Bond Orders. Journal of Physical Chemistry A, 2005, 109, 9904-9910.	2.5	169
136	Diastereoselective Synthesis of Fulleropyrrolidines from Suitably Functionalized Chiral Cyclobutanes. Journal of Organic Chemistry, 2005, 70, 6929-6932.	3.2	22
137	Relation between the Substituent Effect and Aromaticity. Journal of Organic Chemistry, 2004, 69, 6634-6640.	3.2	177
138	Analysis of electronic delocalization in buckminsterfullerene (C60). International Journal of Quantum Chemistry, 2004, 98, 361-366.	2.0	23
139	Discrepancy Between Common Local Aromaticity Measures in a Series of Carbazole Derivatives. ChemInform, 2004, 35, no.	0.0	0
140	Local Aromaticity of the Six-Membered Rings in Pyracylene. A Difficult Case for the NICS Indicator of Aromaticity. Journal of Organic Chemistry, 2004, 69, 7537-7542.	3.2	113
141	Ground and Low-Lying States of Cu2+â^'H2O. A Difficult Case for Density Functional Methods. Journal of Physical Chemistry A, 2004, 108, 6072-6078.	2.5	85
142	Discrepancy between common local aromaticity measures in a series of carbazole derivatives. Physical Chemistry Chemical Physics, 2004, 6, 314-318.	2.8	106
143	An Insight into the Local Aromaticities of Polycyclic Aromatic Hydrocarbons and Fullerenes ChemInform, 2003, 34, no.	0.0	0
144	The Delocalization Index as an Electronic Aromaticity Criterion: Application to a Series of Planar Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 2003, 9, 400-406.	3.3	396

#	Article	IF	CITATIONS
145	An Insight into the Local Aromaticities of Polycyclic Aromatic Hydrocarbons and Fullerenes. Chemistry - A European Journal, 2003, 9, 1113-1122.	3.3	125

146 Electron pairing analysis of the Fischer-type chromium–carbene complexes (CO)5Crĩ...C(X)R (X=H, OH,) Tj ETQq0 0 rgBT₁₈Overlock

147	On the electron-pair nature of the hydrogen bond in the framework of the atoms in molecules theory. Chemical Physics Letters, 2003, 369, 248-255.	2.6	74
148	Nuclear magnetic resonance chemical shifts with the statistical average of orbital-dependent model potentials in Kohn–Sham density functional theory. Journal of Chemical Physics, 2003, 118, 8584-8593.	3.0	48
149	Analysis of the effect of changing the a0 parameter of the Becke3-LYP hybrid functional on the transition state geometries and energy barriers in a series of prototypical reactions. Physical Chemistry Chemical Physics, 2002, 4, 722-731.	2.8	51
150	The calculation of electron localization and delocalization indices at the Hartree-Fock, density functional and post-Hartree-Fock levels of theory. Theoretical Chemistry Accounts, 2002, 107, 362-371.	1.4	187
151	Electron-pairing analysis from localization and delocalization indices in the framework of the atoms-in-molecules theory. Theoretical Chemistry Accounts, 2002, 108, 214-224.	1.4	175
152	New Insights in Chemical Reactivity by Means of Electron Pairing Analysis. Journal of Physical Chemistry A, 2001, 105, 2052-2063.	2.5	34
153	Effects of Solvation on the Pairing of Electrons in a Series of Simple Molecules and in the Menshutkin Reaction. Journal of Physical Chemistry A, 2001, 105, 6249-6257.	2.5	32
154	Parametrization of the Becke3-LYP hybrid functional for a series of small molecules using quantum molecular similarity techniques. Journal of Computational Chemistry, 2001, 22, 1666-1678.	3.3	21
155	Aromaticity Analysis by Means of the Quantum Theory of Atoms in Molecules. , 0, , 399-423.		6
156	Aromaticity and Extrusion of Benzenoids Linked to [<i>o</i> OSAN] ^{â^'} : Clar Has the Answer. Angewandte Chemie, 0, , .	2.0	3