
Rita Delgado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2784711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Critical evaluation of stability constants of metal complexes of complexones for biomedical and environmental applications* (IUPAC Technical Report). Pure and Applied Chemistry, 2005, 77, 1445-1495.	0.9	250
2	Metal complexes of cyclic tetra-azatetra-acetic acids. Talanta, 1982, 29, 815-822.	2.9	164
3	Metal complexes of cyclen and cyclam derivatives useful for medical applications: a discussion based on thermodynamic stability constants and structural data. Dalton Transactions, 2007, , 2734-2745.	1.6	151
4	Critical evaluation of stability constants and thermodynamic functions of metal complexes of crown ethers (IUPAC Technical Report). Pure and Applied Chemistry, 2003, 75, 71-102.	0.9	115
5	The stability of the metal complexes of cyclic tetra-aza tetra-acetic acids. Talanta, 1992, 39, 249-254.	2.9	108
6	Stabilities of divalent and trivalent metal ion complexes of macrocyclic triazatriacetic acids. Inorganic Chemistry, 1993, 32, 3320-3326.	1.9	103
7	Metal complexes of macrocyclic ligands containing pyridine. Inorganic Chemistry, 1993, 32, 5257-5265.	1.9	98
8	Dissociation constants of Brâ^nsted acids in D2O and H2O: studies on polyaza and polyoxa-polyaza macrocycles and a general correlation. Analytica Chimica Acta, 1991, 245, 271-282.	2.6	95
9	Recognition of anions by polyammonium macrocyclic and cryptand receptors: Influence of the dimensionality on the binding behavior. Coordination Chemistry Reviews, 2010, 254, 1726-1747.	9.5	83
10	Monopicolinate Cyclen and Cyclam Derivatives for Stable Copper(II) Complexation. Inorganic Chemistry, 2012, 51, 6916-6927.	1.9	82
11	Polyaza Cryptand Receptor Selective for Dihydrogen Phosphate. Journal of Organic Chemistry, 2009, 74, 8638-8646.	1.7	81
12	Copper(II) Complexes of Phenanthroline and Histidine Containing Ligands: Synthesis, Characterization and Evaluation of their DNA Cleavage and Cytotoxic Activity. Inorganic Chemistry, 2016, 55, 11801-11814.	1.9	66
13	Dinuclear Zinc(II) Macrocyclic Complex as Receptor for Selective Fluorescence Sensing of Pyrophosphate. Inorganic Chemistry, 2016, 55, 2212-2219.	1.9	64
14	Metal Complexes with Macrocyclic Ligands. Part XXXI. Protonation studies and complexation properties of tetraazamacrocyclic methylenephosphonates with earth-alkali ions. Helvetica Chimica Acta, 1990, 73, 140-148.	1.0	62
15	Selective recognition of tetrahedral dianions by a hexaaza cryptand receptor. Organic and Biomolecular Chemistry, 2009, 7, 4661.	1.5	62
16	13- and 14-membered macrocyclic ligands containing methylcarboxylate or methylphosphonate pendant arms: Chemical and biological evaluation of their 153Sm and 166Ho complexes as potential agents for therapy or bone pain palliation. Journal of Inorganic Biochemistry, 2006, 100, 270-280.	1.5	58
17	Monopicolinate-dipicolyl Derivative of Triazacyclononane for Stable Complexation of Cu ²⁺ and ⁶⁴ Cu ²⁺ . Inorganic Chemistry, 2013, 52, 5246-5259.	1.9	52
18	Monopicolinate Cross-Bridged Cyclam Combining Very Fast Complexation with Very High Stability and Inertness of Its Copper(II) Complex. Inorganic Chemistry, 2014, 53, 5269-5279.	1.9	51

#	Article	IF	CITATIONS
19	Stability constants of metal complexes of macrocyclic ligands with pendant donor groups. Supramolecular Chemistry, 1996, 6, 353-363.	1.5	46
20	Investigating the Complexation of the Pb ²⁺ /Bi ³⁺ Pair with Dipicolinate Cyclen Ligands. Inorganic Chemistry, 2015, 54, 7045-7057.	1.9	45
21	A Trinuclear Copper(II) Cryptate and Its μ ₃ â€CO ₃ Cascade Complex: Thermodynamics, Structural and Magnetic Properties. Chemistry - A European Journal, 2011, 17, 11193-11203.	1.7	44
22	Lanthanide complexes of macrocyclic derivatives useful for medical applications. Pure and Applied Chemistry, 2005, 77, 569-579.	0.9	43
23	Redox method for the determination of stability constants of some trivalent metal complexes. Talanta, 1997, 45, 451-462.	2.9	40
24	Recognition of Oxalate by a Copper(II) Polyaza Macrobicyclic Complex. Chemistry - A European Journal, 2011, 17, 7020-7031.	1.7	38
25	Anion Recognition by a Macrobicycle Based on a Tetraoxadiaza Macrocycle and an Isophthalamide Head Unit. Journal of Organic Chemistry, 2009, 74, 4819-4827.	1.7	37
26	Di- and trinuclear copper(II) complexes of polyaza macrocycles and cryptands as anion receptors. Polyhedron, 2013, 52, 25-42.	1.0	37
27	Metal complexes of a 12-membered tetraaza macrocycle containing pyridine and N-carboxymethyl groups. Journal of the Chemical Society Dalton Transactions, 1997, , 55-64.	1.1	36
28	Reasons behind the Relative Abundances of Heptacoordinate Complexes along the Late First-Row Transition Metal Series. Inorganic Chemistry, 2014, 53, 12859-12869.	1.9	35
29	Harnessing the Flexibility of Peptidic Scaffolds to Control their Copper(II) oordination Properties: A Potentiometric and Spectroscopic Study. Chemistry - A European Journal, 2013, 19, 2076-2088.	1.7	34
30	Dicarboxylate Recognition by Two Macrobicyclic Receptors: Selectivity for Fumarate over Maleate. Journal of Organic Chemistry, 2012, 77, 4611-4621.	1.7	32
31	Recognition of dicarboxylate anions by a ditopic hexaazamacrocycle containing bis-p-xylyl spacers. New Journal of Chemistry, 2006, 30, 247.	1.4	31
32	Dicarboxylate Recognition Properties of a Dinuclear Copper(II) Cryptate. Inorganic Chemistry, 2015, 54, 229-240.	1.9	31
33	Improving the stability and inertness of Cu(<scp>ii</scp>) and Cu(<scp>i</scp>) complexes with methylthiazolyl ligands by tuning the macrocyclic structure. Dalton Transactions, 2016, 45, 7406-7420.	1.6	31
34	Protonation and metal complexation studies on some oxa-diaza macrocyclic ligands. Polyhedron, 1990, 9, 2847-2857.	1.0	30
35	Oxatriaza macrocyclic ligands: studies of protonation and metal complexation. Journal of the Chemical Society Dalton Transactions, 1991, , 3065.	1.1	30
36	Bis- and tris-(methylphosphonic) acid derivatives of a 14-membered tetraazamacrocycle containing pyridine: synthesis, protonation and complexation studies. Dalton Transactions, 2004, , 1812-1822.	1.6	30

#	Article	IF	CITATIONS
37	In vitro effect of free and complexed indium(III) againstMycobacterium tuberculosis. FEMS Microbiology Letters, 2005, 251, 119-124.	0.7	28
38	Remarkable Inertness of Copper(II) Chelates of Cyclen-Based Macrobicycles with Two <i>trans</i> - <i>N</i> -Acetate Arms. Inorganic Chemistry, 2013, 52, 5138-5153.	1.9	27
39	Metal complexes of a tetraaza macrocycle with N-carboxymethyl groups as pendant arms. Journal of the Chemical Society Dalton Transactions, 1997, , 65.	1.1	26
40	Design of selective macrocyclic ligands for the divalent first-row transition-metal ions â€. Journal of the Chemical Society Dalton Transactions, 1998, , 1063-1072.	1.1	26
41	Methyl pyridine derivatives of 14-membered tetraaza macrocycles. A new host with high selectivity for cadmium â€. Journal of the Chemical Society Dalton Transactions, 1999, , 4331-4339.	1.1	26
42	X-Ray diffraction and molecular mechanics studies of 12-, 13-, and 14-membered tetraaza macrocycles containing pyridine: effect of the macrocyclic cavity size on the selectivity of the metal ion. Dalton Transactions RSC, 2001, , 1462-1471.	2.3	26
43	Dinuclear copper and zinc complexes of a hexaazamacrocycle containing p-xylyl spacers and bridging anions: theoretical and spectroscopic studies. Dalton Transactions, 2003, , 4261-4270.	1.6	26
44	Two macrocyclic pentaaza compounds containing pyridine evaluated as novel chelating agents in copper(II) and nickel(II) overload. Journal of Inorganic Biochemistry, 2011, 105, 410-419.	1.5	26
45	Copper(ii) coordination properties of decapeptides containing three His residues: the impact of cyclization and Asp residue coordination. Dalton Transactions, 2013, 42, 6182.	1.6	26
46	H2Me-do2pa: an attractive chelator with fast, stable and inert ^{nat} Bi ³⁺ and ²¹³ Bi ³⁺ complexation for potential α-radioimmunotherapy applications. Chemical Communications, 2014, 50, 12371-12374.	2.2	26
47	Sulfate recognition by a hexaaza cryptand receptor. Organic and Biomolecular Chemistry, 2015, 13, 834-842.	1.5	26
48	Hexaazamacrocycle Containing Pyridine and Its Dicopper Complex as Receptors for Dicarboxylate Anions. European Journal of Inorganic Chemistry, 2005, 2005, 4550-4561.	1.0	25
49	Evaluation of the Binding Ability of a Novel Dioxatetraazamacrocyclic Receptor that Contains Two Phenanthroline Units:  Selective Uptake of Carboxylate Anions. Journal of Organic Chemistry, 2007, 72, 4023-4034.	1.7	25
50	trans-Methylpyridine cyclen versus cross-bridged trans-methylpyridine cyclen. Synthesis, acid–base and metal complexation studies (metal = Co2+, Cu2+, and Zn2+). Dalton Transactions, 2011, 40, 4514.	1.6	25
51	N,N′-diacetate derivatives of some polyoxa-polyaza macrocyclic compounds: Protonation and complexation studies. Polyhedron, 1992, 11, 1891-1899.	1.0	24
52	A new redox-responsive 14-membered tetraazamacrocycle with ferrocenylmethyl arms as receptor for sensing transition-metal ions. Dalton Transactions RSC, 2000, , 1907-1916.	2.3	24
53	153Sm and 166Ho complexes with tetraaza macrocycles containing pyridine and methylcarboxylate or methylphosphonate pendant arms. Journal of Biological Inorganic Chemistry, 2004, 9, 859-872.	1.1	23
54	1,4,7â€Triazacyclononaneâ€Based Bifunctional Picolinate Ligands for Efficient Copper Complexation. European Journal of Inorganic Chemistry, 2017, 2017, 2435-2443.	1.0	23

#	Article	IF	CITATIONS
55	Nuclear magnetic resonance studies of the protonation sequence of some oxaaza macrocyclic compounds. Journal of the Chemical Society Dalton Transactions, 1990, , 3449.	1.1	22
56	Design of Protonated Polyazamacrocycles Based on Phenanthroline Motifs for Selective Uptake of Aromatic Carboxylate Anions and Herbicides. Chemistry - A European Journal, 2009, 15, 3277-3289.	1.7	22
57	Evaluation of the binding ability of tetraaza[2]arene[2]triazine receptors anchoring l-alanine units for aromatic carboxylate anions. Tetrahedron, 2012, 68, 670-680.	1.0	22
58	The thermodynamics of complex formation of cyclic tetra-aza-tetracetic acids. Inorganica Chimica Acta, 1984, 90, 185-190.	1.2	21
59	Complexes of Ga3+and In3+with the N,N″-bis(butylamide) derivative of diethylenetriaminepentaacetic acid: stability constants and nuclear magnetic resonance studies in aqueous solution. Journal of the Chemical Society Dalton Transactions, 1995, , 327-335.	1.1	21
60	Tetraaza macrocycles containing pyridine and their copper(II) and nickel(II) complexes: X-ray, spectroscopic, molecular mechanics and molecular orbital studies. Journal of the Chemical Society Dalton Transactions, 1996, , 4543-4553.	1.1	21
61	Dicopper(ii) complexes of a new di-para-xylyldioxatetraazamacrocycle and cascade species with dicarboxylate anions: thermodynamics and structural properties. Dalton Transactions, 2007, , 2431-2439.	1.6	21
62	Copper Complexes of New Benzodioxotetraaza Macrocycles with Potential Applications in Nuclear Medicine. Inorganic Chemistry, 2007, 46, 3144-3153.	1.9	21
63	Di- versus Trinuclear Copper(II) Cryptate for the Uptake of Dicarboxylate Anions. Inorganic Chemistry, 2016, 55, 7051-7060.	1.9	21
64	Methylthiazolyl Tacn Ligands for Copper Complexation and Their Bifunctional Chelating Agent Derivatives for Bioconjugation and Copper-64 Radiolabeling: An Example with Bombesin. Inorganic Chemistry, 2019, 58, 2669-2685.	1.9	21
65	Triethylenetetramine-N,N,Nâ€~,Nâ€~â€~â€~,Nâ€~â€~â€~â€~â€~ hexaacetic Acid (TTHA) and TTHA-Bis(butanamic Agents Relevant to Radiopharmaceutical Applications. Inorganic Chemistry, 1998, 37, 2729-2740.	de) as Cheli	ating 20
66	Bis[1,1′-N,N′-(2-picolyl)aminomethyl]ferrocene as a redox sensor for transition metal ions. Dalton Transactions, 2004, , 1743-1751.	1.6	20
67	Copper(II) and Gallium(III) Complexes of <i>trans</i> -Bis(2-hydroxybenzyl) Cyclen Derivatives: Absence of a Cross-Bridge Proves Surprisingly More Favorable. Inorganic Chemistry, 2014, 53, 4371-4386.	1.9	20
68	Structural characterization of cobalt(III), nickel(II), copper(II) and iron(III) complexes of tetraazamacrocycles with N-carboxymethyl arms. Journal of the Chemical Society Dalton Transactions, 1999, , 3253-3265.	1.1	19
69	Study of the cyclen derivative 2-[1,4,7,10-tetraazacyclododecan-1-yl]-ethanethiol and its complexation behaviour towards d-transition metal ions. Polyhedron, 2007, 26, 3763-3773.	1.0	19
70	Binding studies of a protonated dioxatetraazamacrocycle with carboxylate substrates. Tetrahedron, 2008, 64, 5392-5403.	1.0	19
71	Nuclear magnetic resonance studies of the protonation sequence of cyclic tetra-azatetra-acetic acids. Journal of the Chemical Society Perkin Transactions II, 1985, , 781-788.	0.9	18
72	Cyclam derivatives containing three acetate pendant arms: synthesis, acid–base, metal complexation and structural studies. Dalton Transactions, 2008, , 6593.	1.6	18

Rita Delgado

#	Article	IF	CITATIONS
73	Dimetallic complexes of macrocycles with two rigid dibenzofuran units as receptors for detection of anionic substrates. Dalton Transactions, 2010, 39, 9579.	1.6	18
74	Heteroditopic receptor based on crown ether and cyclen units for the recognition of zwitterionic amino acids. Tetrahedron, 2012, 68, 4860-4868.	1.0	18
75	Thermodynamics of the formation of metal complexes of 1,4,10-trioxa-7,13-diazacyclopentadecane-N,N′-diacetic acid and of 1,4,10,13-tetraoxa-7,16-diazacyclo-octadecane-N,N′-diacetic acid. Journal of the Chemical Society Dalton Transactions. 1989 133-137.	1.1	17
76	Metal complexes of dipyridine hexaaza macrocycles. Structural differences between 18- and 20-membered macrocycles on complexation. Dalton Transactions RSC, 2002, , 3539.	2.3	17
77	Ditopic hexaazamacrocycles containing pyridine: synthesis, protonation and complexation studies. Dalton Transactions, 2005, , 82-91.	1.6	17
78	Bis- and tris-(3-aminopropyl) derivatives of 14-membered tetraazamacrocycles containing pyridine: synthesis, protonation and complexation studies. Dalton Transactions, 2006, , 4124-4133.	1.6	17
79	Metal complexes of a tetraazacyclophane: solution and molecular modelling studies. Dalton Transactions, 2003, , 1852.	1.6	16
80	New dioxadiaza-, trioxadiaza- and hexaaza-macrocycles containing dibenzofuran units. Tetrahedron, 2006, 62, 8550-8558.	1.0	16
81	Polyamide–Polyamine Cryptand as Dicarboxylate Receptor: Dianion Binding Studies in the Solid State, in Solution, and in the Gas Phase. Journal of Organic Chemistry, 2017, 82, 10007-10014.	1.7	16
82	Copper(II) complexes of cyclic tetra-azatetra-acetic acids—unusual features and possible analytical applications. Talanta, 1986, 33, 285-287.	2.9	15
83	Metal complexes of 1,4,10-trioxa-7,13 -diazacyclopentadecane-N,N'-diacetic acid. Polyhedron, 1987, 6, 29-38.	1.0	15
84	Carboxylate anions binding and sensing by a novel tetraazamacrocycle containing ferrocene as receptor. Dalton Transactions, 2005, , 3297.	1.6	15
85	Dioxadiaza- and trioxadiaza-macrocycles containing one dibenzofuran unit selective for cadmium. Dalton Transactions, 2006, , 5396-5403.	1.6	15
86	Cyclams with Ambidentate Methylthiazolyl Pendants for Stable, Inert, and Selective Cu(II) Coordination. Inorganic Chemistry, 2016, 55, 619-632.	1.9	15
87	Mn2+, Co2+, Cu2+ and Zn2+complexes with two macrocyclic ligands bearing l-lactate-like functions: potentiometric studies and evaluation of superoxide-scavenging properties of the Mn2+ complex. Journal of Inorganic Biochemistry, 2000, 81, 65-71.	1.5	14
88	Cyclen derivatives with two trans-methylnitrophenolic pendant arms: a structural study of their copper(ii) and zinc(ii) complexes. Dalton Transactions, 2013, 42, 6149.	1.6	14
89	Metal Complexes of Pentadentate Macrocyclic Ligands Containing Oxygen and Nitrogen as Donor Atoms. Helvetica Chimica Acta, 1994, 77, 515-524.	1.0	13
90	Steric Effects on the Binding of Phosphate and Polyphosphate Anions by Zinc(II) and Copper(II) Dinuclear Complexes of <i>m</i> -Xylyl-bis-cyclen. Inorganic Chemistry, 2018, 57, 6466-6478.	1.9	13

#	Article	IF	CITATIONS
91	Homo-and heterodinuclear complexes of the tris(catecholamide) derivative of a tetraazamacrocycle with Fe3+, Cu2+and Zn2+metal ions. Dalton Transactions, 2008, , 539-550.	1.6	12
92	Effect of the Peptidic Scaffold in Copper(II) Coordination and the Redox Properties of Short Histidine ontaining Peptides. Chemistry - A European Journal, 2015, 21, 13100-13111.	1.7	12
93	Exceptional efficacy of some new lacunar dioxygen carriers based on Schiff bases derived from .betadiketones and triamines. Journal of the American Chemical Society, 1987, 109, 6855-6857.	6.6	11
94	A polyoxapolyaza macrobicyclic receptor for the recognition of zwitterions. Organic and Biomolecular Chemistry, 2012, 10, 5529.	1.5	11
95	Synthesis, electron spin resonance spectroscopy, and shape-determining angle analysis of superstructured copper(II) Schiff base complexes containing persistent voids. Inorganic Chemistry, 1991, 30, 2724-2731.	1.9	10
96	13-Membered macrocycles and their complexometric properties: study of 7,11-bis(carboxymethyl)-1,4-dioxa-7,11-diazacyclotridecane. Polyhedron, 1998, 17, 93-104.	1.0	10
97	Activity against Mycobacterium tuberculosis with concomitant induction of cellular immune responses by a tetraaza-macrocycle with acetate pendant arms. Research in Microbiology, 2001, 152, 569-576.	1.0	10
98	Metal complexes of edta-derived macrocyclic ether bis(lactones). Hydrolysis of the macrocycles and the metal catalysis effect. Polyhedron, 2002, 21, 2265-2276.	1.0	10
99	Metal complexes of a dipyridine octaazamacrocycle: stability constants, structural and modelling studies. Dalton Transactions, 2003, , 3172-3183.	1.6	10
100	Radiopharmaceuticals for targeted radiotherapy. Radiation Protection Dosimetry, 2005, 116, 601-604.	0.4	10
101	Properties of a new 4-imidazolyl derivative of a 14-membered tetraazamacrocyclic chelating agent. Dalton Transactions, 2007, , 4536.	1.6	10
102	Cascade dicopper architectures of a dibenzodioxatetraazamacrocycle. Polyhedron, 2008, 27, 679-687.	1.0	10
103	TETA analogue containing one methylenephosphonate pendant arm: Lanthanide complexes and biological evaluation of its 153Sm and 166Ho complexes. European Journal of Medicinal Chemistry, 2010, 45, 5621-5627.	2.6	10
104	Tris(phosphonomethyl) Cyclen Derivatives: Synthesis, Acid–Base Properties and Complexation Studies with Cu ²⁺ and Zn ²⁺ Ions. European Journal of Inorganic Chemistry, 2012, 2012, 2533-2547.	1.0	10
105	A squaraine-based dipicolylamine derivative acting as a turn-on mercury(<scp>ii</scp>) fluorescent probe in water. New Journal of Chemistry, 2020, 44, 6589-6600.	1.4	10
106	Complexation of <i>C</i> -Functionalized Cyclams with Copper(II) and Zinc(II): Similarities and Changes When Compared to Parent Cyclam Analogues. Inorganic Chemistry, 2021, 60, 10857-10872.	1.9	10
107	Recognition of phosphopeptides by a dinuclear copper(<scp>ii</scp>) macrocyclic complex in a water : methanol 50 : 50 v/v solution. Dalton Transactions, 2017, 46, 9549-9564.	1.6	9
108	Phosphate and polyphosphate anion recognition by a dinuclear copper(<scp>ii</scp>) complex of an unsymmetrical squaramide. Dalton Transactions, 2019, 48, 10104-10115.	1.6	9

#	Article	IF	CITATIONS
109	1-Oxa-4,8,12-triazacyclotetradecane-4,12-diacetic acid (H2L2): studies on protonation and metal complexation; crystal structure of [CuL2]·5H2O. Journal of the Chemical Society Dalton Transactions, 1992, , 2579-2584.	1.1	8
110	Electron spin resonance studies and crystal structures of copper(II) complexes of some 12-, 13- and 14-membered oxatriaza macrocycles. Journal of the Chemical Society Dalton Transactions, 1994, , 3099-3106.	1.1	8
111	Supramolecular aggregates between carboxylate anions and an octaaza macrocyclic receptor. Organic and Biomolecular Chemistry, 2004, 2, 2911-2918.	1.5	8
112	Tris(carboxymethyl)oxatriazamacrocycles and their metal complexes â€. Journal of the Chemical Society Dalton Transactions, 1997, , 4181-4190.	1.1	7
113	Dioxatriazamacrocycle-N,Nâ€ ² ,Nâ€ ³ -triacetic Acids: Synthesis, Protonation Constants, and Metal-Complex Studies. Crystal Structure of Hydrogen [1,4-Dioxa-7,10,13-triazacyclopentadecane-7,10,13-triacetato(4)-κN7,κN11,κN13,κO7]copper(1 -) Hydrate (2 : 1 ([Cu(HL1)]â<0.5 H2O), Helvetica Chimica Acta. 2000. 83. 702-721.	1.0	7
114	Evaluation of the binding ability of a macrobicyclic receptor for anions by potentiometry and molecular dynamics simulations in solution. Tetrahedron, 2010, 66, 8714-8721.	1.0	7
115	Water Encapsulation in a Polyoxapolyaza Macrobicyclic Compound. Journal of Organic Chemistry, 2012, 77, 6816-6824.	1.7	7
116	<i>endo</i> - <i>versus exo</i> -Cyclic coordination in copper complexes with methylthiazolylcarboxylate tacn derivatives. Dalton Transactions, 2019, 48, 8740-8755.	1.6	7
117	New dioxadiaza- and trioxadiaza-macrocycles containing one dibenzofuran unit with two amino pendant arms: synthesis, protonation and complexation studies. Dalton Transactions, 2007, , 1316-1324.	1.6	6
118	Inhibition of the STAT3 Protein by a Dinuclear Macrocyclic Complex. Inorganic Chemistry, 2016, 55, 3589-3598.	1.9	6
119	Zinc(<scp>ii</scp>) and copper(<scp>ii</scp>) complexes as tools to monitor/inhibit protein phosphorylation events. Dalton Transactions, 2020, 49, 17076-17092.	1.6	6
120	Lanthanide complexes of 1,4,7,10-tetra-azacyclotridecane-1,4,7,10-tetra-acetic acid: proton nuclear magnetic resonance studies. Journal of the Chemical Society Dalton Transactions, 1986, , 2395.	1.1	5
121	4,7,10,13-Tetrakis(carboxymethyl)-1-oxa-4,7,10,13-tetraazacyclopentadecane and properties of its metal complexes. Polyhedron, 1999, 18, 3479-3489.	1.0	5
122	Metal Complexes of an Oxatriaza Macrocycle Containing Pyridine: Thermodynamic Stability and Structural Studies. Supramolecular Chemistry, 2001, 13, 333-347.	1.5	5
123	Tetraazamacrocycle bearing quinoline pendant arms and its complexation properties. Inorganica Chimica Acta, 2003, 356, 133-141.	1.2	5
124	A N,N′-diacetate benzodioxotetraazamacrocycle and its transition metal complexes. Polyhedron, 2005, 24, 451-461.	1.0	5
125	A New Tris(phosphonomethyl) Monoacetic Acid Cyclam Derivative: Synthesis, Acid-Base and Metal Complexation Studies. European Journal of Inorganic Chemistry, 2011, 2011, 527-538.	1.0	5
126	Tris(phosphonomethyl)cyclen Derivatives: Thermodynamic Stability, Kinetics, Solution Structure, and Relaxivity of Ln ³⁺ Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 2548-2559.	1.0	5

#	Article	IF	CITATIONS
127	Structure, Characterization, and Metal-Complexation Properties of a New Tetraazamacrocycle Containing Two Phenolic Pendant Arms. Helvetica Chimica Acta, 2004, 87, 2613-2628.	1.0	4
128	Properties of Metal Complexes of a New Dioxadiaza Macrocycle Containing a Dibenzofuran Unit and Acetate Pendant Arms. European Journal of Inorganic Chemistry, 2011, 2011, 4700-4708.	1.0	4
129	Monitoring inorganic pyrophosphatase activity with the fluorescent dizinc(ii) complex of a macrocycle bearing one dansylamidoethyl antenna. Dalton Transactions, 2020, 49, 9487-9494.	1.6	4
130	Iron(III) complexes of the tris-(3-aminopropyl) derivative of a 14-membered tetraazamacrocycle: Potentiometric, spectroscopic and electrochemical studies. Polyhedron, 2008, 27, 2265-2270.	1.0	3
131	Exploring Mycobacterium avium inhibition by macrocyclic compounds. Research in Microbiology, 2005, 156, 904-910.	1.0	2
132	Critical Evaluation of Stability Constants of Metal Complexes of Complexones for Biomedical and Environmental Applications. ChemInform, 2006, 37, no.	0.1	2
133	Kinetic Study of Dissociation of a Copper(II) Complex of A 14-Membered Tetraaza-Macrocyclic Ligand Containing Pyridine and Pendant N-Carboxymethyl Arms. Collection of Czechoslovak Chemical Communications, 2008, 73, 258-274.	1.0	2
134	Rigid ferrocenophane and its metal complexes with transition and alkaline-earth metal ions. Polyhedron, 2010, 29, 1697-1705.	1.0	2
135	The role of methylation in the copper(<scp>ii</scp>) coordination properties of a His-containing decapeptide. Dalton Transactions, 2019, 48, 1859-1870.	1.6	2

136 Triethylenetetramine-N,N,N′,N′′,N′′′,N′′′′-hexaacetic Acid (TTHA) and TTHA-Bis(butanamide) as Chelating Agent Relevant to Radiopharmaceutical Applications.. Inorganic Chemistry, 1998, 37, 6552-6552.