Maria Alice Z Coelho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2784645/publications.pdf Version: 2024-02-01

		117625	133252
115	4,089	34	59
papers	citations	h-index	g-index
122	122	122	5066
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Menthol-based Eutectic Mixtures: Hydrophobic Low Viscosity Solvents. ACS Sustainable Chemistry and Engineering, 2015, 3, 2469-2477.	6.7	420
2	Effect of chemical treatments on properties of green coconut fiber. Carbohydrate Polymers, 2010, 79, 832-838.	10.2	275
3	Production and characterization of a bioemulsifier from Yarrowia lipolytica. Process Biochemistry, 2006, 41, 1894-1898.	3.7	156
4	Immobilization of commercial laccase onto green coconut fiber by adsorption and its application for reactive textile dyes degradation. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 6-12.	1.8	127
5	Technological Aspects of \hat{I}^2 -Carotene Production. Food and Bioprocess Technology, 2011, 4, 693-701.	4.7	121
6	Ionic liquid-based aqueous biphasic system for lipase extraction. Green Chemistry, 2011, 13, 390-396.	9.0	120
7	Production and Use of Lipases in Bioenergy: A Review from the Feedstocks to Biodiesel Production. Enzyme Research, 2011, 2011, 1-16.	1.8	118
8	Glycerol valorization: New biotechnological routes. Food and Bioproducts Processing, 2009, 87, 179-186.	3.6	116
9	Accurel MP 1000 as a support for the immobilization of lipase from Burkholderia cepacia : Application to the kinetic resolution of myo -inositol derivatives. Process Biochemistry, 2015, 50, 1557-1564.	3.7	81
10	Optimization of a sequencing batch reactor for biological nitrogen removal. Water Research, 2000, 34, 2809-2817.	11.3	79
11	Lipase from Yarrowia lipolytica: Production, characterization and application as an industrial biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 2014, 101, 148-158.	1.8	78
12	Decolorization of Dyes from textile wastewater by <i>Trametes versicolor</i> . Environmental Technology (United Kingdom), 2004, 25, 1313-1320.	2.2	72
13	Optimization and Modeling of Laccase Production by Trametes versicolor in a Bioreactor Using Statistical Experimental Design. Applied Biochemistry and Biotechnology, 2006, 134, 233-248.	2.9	72
14	Biosurfactants from Yeasts: Characteristics, Production and Application. Advances in Experimental Medicine and Biology, 2010, 672, 236-249.	1.6	70
15	Aging mechanisms of perfluorocarbon emulsions using image analysis. Journal of Colloid and Interface Science, 2005, 286, 224-232.	9.4	69
16	Green coconut fiber: a novel carrier for the immobilization of commercial laccase by covalent attachment for textile dyes decolourization. World Journal of Microbiology and Biotechnology, 2012, 28, 2827-2838.	3.6	68
17	Functional properties of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro): Critical micellar concentration, antioxidant and antimicrobial activities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 736-743.	4.7	67
18	Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase. Biotechnology and Bioengineering, 2008, 99, 588-598.	3.3	65

#	Article	IF	CITATIONS
19	Toxicity of ionic liquids toward microorganisms interesting to the food industry. RSC Advances, 2014, 4, 37157-37163.	3.6	64
20	Laccase improvement in submerged cultivation: induced production and kinetic modelling. Journal of Chemical Technology and Biotechnology, 2005, 80, 669-676.	3.2	63
21	lonic Liquids as Additives for Extraction of Saponins and Polyphenols from Mate (Ilex paraguariensis) and Tea (Camellia sinensis). Industrial & Engineering Chemistry Research, 2013, 52, 12146-12153.	3.7	52
22	Optimization of lipase production by Aspergillus ibericus from oil cakes and its application in esterification reactions. Food and Bioproducts Processing, 2017, 102, 268-277.	3.6	52
23	Combination of enzyme-assisted extraction and high hydrostatic pressure for phenolic compounds recovery from grape pomace. Journal of Food Engineering, 2021, 288, 110128.	5.2	52
24	Produção de biossurfactante por levedura. Quimica Nova, 2008, 31, 2091-2099.	0.3	51
25	Cell surface characterization of Yarrowia lipolytica IMUFRJ 50682. Yeast, 2006, 23, 867-877.	1.7	49
26	Yarrowia lipolytica lipase production enhanced by increased air pressure. Letters in Applied Microbiology, 2008, 46, 255-260.	2.2	47
27	Poly(ethylene terephthalate) (PET) degradation by Yarrowia lipolytica: Investigations on cell growth, enzyme production and monomers consumption. Process Biochemistry, 2020, 95, 81-90.	3.7	47
28	A model for performance prediction of hydrocyclones. Chemical Engineering Journal, 2001, 84, 7-14.	12.7	46
29	Extraction of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro) with cholinium-based ionic liquids and deep eutectic solvents. European Food Research and Technology, 2013, 237, 965-975.	3.3	46
30	Effect of hyperbaric stress on yeast morphology: study by automated image analysis. Applied Microbiology and Biotechnology, 2004, 66, 318-324.	3.6	43
31	Recognition of protozoa and metazoa using image analysis tools, discriminant analysis, neural networks and decision trees. Analytica Chimica Acta, 2007, 595, 160-169.	5.4	42
32	Renewable resources for biosurfactant production by yarrowia lipolytica. Brazilian Journal of Chemical Engineering, 2012, 29, 483-494.	1.3	42
33	Olive oil and lemon salad dressing microencapsulated by freeze-drying. LWT - Food Science and Technology, 2013, 50, 569-574.	5.2	39
34	Biological Approaches for Extraction of Bioactive Compounds From Agro-industrial By-products: A Review. Frontiers in Bioengineering and Biotechnology, 2021, 9, 802543.	4.1	39
35	Morphological analysis of Yarrowia lipolytica under stress conditions through image processing. Bioprocess and Biosystems Engineering, 2003, 25, 371-375.	3.4	36
36	Selection and Optimization of Culture Medium for Exopolysaccharide Production by Coriolus (Trametes) Versicolor. World Journal of Microbiology and Biotechnology, 2005, 21, 1499-1507.	3.6	34

Maria Alice Z Coelho

#	Article	IF	CITATIONS
37	Development of an image analysis procedure for identifying protozoa and metazoa typical of activated sludge system. Water Research, 2007, 41, 2581-2589.	11.3	34
38	Improving lipase production using a perfluorocarbon as oxygen carrier. Journal of Chemical Technology and Biotechnology, 2006, 81, 1368-1374.	3.2	33
39	Activated sludge morphology characterization through an image analysis procedure. Brazilian Journal of Chemical Engineering, 2006, 23, 319-330.	1.3	32
40	Model-based optimization of a sequencing batch reactor for biological nitrogen removal. Bioresource Technology, 2008, 99, 3213-3223.	9.6	30
41	Aging mechanisms of oil-in-water emulsions based on a bioemulsifier produced by Yarrowia lipolytica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 324, 149-154.	4.7	27
42	Production of concentrated natural beta-carotene from buriti (Mauritia vinifera) oil by enzymatic hydrolysis. Food and Bioproducts Processing, 2012, 90, 141-147.	3.6	27
43	Kinetic Resolution of 1,3,6-Tri-O-benzyl-myo-Inositol by Novozym 435: Optimization and Enzyme Reuse. Organic Process Research and Development, 2012, 16, 1378-1384.	2.7	26
44	Evaluation of the performance of differently immobilized recombinant lipase B from Candida antarctica preparations for the synthesis of pharmacological derivatives in organic media. RSC Advances, 2016, 6, 4043-4052.	3.6	26
45	Tyrosinase Extract from <i>Agaricus bisporus</i> Mushroom and its <i>in Natura</i> Tissue for Specific Phenol Removal. Environmental Technology (United Kingdom), 2006, 27, 1209-1215.	2.2	25
46	Evaluation of aging mechanisms of olive oil–lemon juice emulsion through digital image analysis. Journal of Food Engineering, 2010, 97, 335-340.	5.2	23
47	On the kinetic resolution of sterically hindered myo-inositol derivatives in organic media by lipases. Tetrahedron: Asymmetry, 2012, 23, 47-52.	1.8	23
48	NITROGEN SOURCES ON TPOMW VALORIZATION THROUGH SOLID STATE FERMENTATION PERFORMED BY Yarrowia lipolytica. Brazilian Journal of Chemical Engineering, 2016, 33, 261-270.	1.3	23
49	Kinetic resolution of a precursor for myo-inositol phosphates under continuous flow conditions. Journal of Molecular Catalysis B: Enzymatic, 2013, 87, 139-143.	1.8	22
50	Growth Parameters and Survivability of Saccharomyces boulardii for Probiotic Alcoholic Beverages Development. Frontiers in Microbiology, 2019, 10, 2092.	3.5	22
51	Preparation and characterization of organosilicon thin films for selective adhesion ofYarrowia lipolytica yeast cells. Journal of Chemical Technology and Biotechnology, 2007, 82, 360-366.	3.2	21
52	Beneficial effects of enhanced aeration using perfluorodecalin in Yarrowia lipolytica cultures for lipase production. World Journal of Microbiology and Biotechnology, 2007, 23, 339-344.	3.6	21
53	Use of micellar extraction and cloud point preconcentration for valorization of saponins from sisal (Agave sisalana) waste. Food and Bioproducts Processing, 2015, 94, 601-609.	3.6	21
54	Characterization and Application of Yarrowia lipolytica Lipase Obtained by Solid-State Fermentation in the Synthesis of Different Esters Used in the Food Industry. Applied Biochemistry and Biotechnology, 2019, 189, 933-959.	2.9	21

#	Article	IF	CITATIONS
55	Adding Value to Agro-industrial Co-products from Canola and Soybean Oil Extraction Through Lipase Production Using Yarrowia lipolytica in Solid-State Fermentation. Waste and Biomass Valorization, 2017, 8, 1163-1176.	3.4	20
56	Extração e fracionamento simultâneo do óleo da castanha-do-Brasil com etanol. Food Science and Technology, 0, 27, 14-17.	1.7	19
57	Enzyme-assisted extraction of carotenoids and phenolic compounds from sunflower wastes using green solvents. 3 Biotech, 2020, 10, 405.	2.2	19
58	Supplementation of watermelon peels as an enhancer of lipase and esterase production byYarrowia lipolyticain solid-state fermentation and their potential use as biocatalysts in poly(ethylene) Tj ETQq0 0 0 rgBT /0	Dvælock 1	0 Tf950 617 T
59	Enzymatic method for determining oxygen solubility in perfluorocarbon emulsions. Fluid Phase Equilibria, 2005, 231, 109-113.	2.5	18
60	Deposition of <i>Yarrowia lipolytica</i> on plasma prepared teflonlike thin films. Surface Engineering, 2008, 24, 23-27.	2.2	17
61	Stalked protozoa identification by image analysis and multivariable statistical techniques. Analytical and Bioanalytical Chemistry, 2008, 391, 1321-1325.	3.7	16
62	Agaricus bisporusas a source of tyrosinase for phenol detection for future biosensor development. Environmental Technology (United Kingdom), 2010, 31, 611-616.	2.2	16
63	A novel osmotic pressure strategy to improve erythritol production by Yarrowia lipolytica from glycerol. Bioprocess and Biosystems Engineering, 2018, 41, 1883-1886.	3.4	16
64	In situ product recovery techniques aiming to obtain biotechnological products: A glance to current knowledge. Biotechnology and Applied Biochemistry, 2021, 68, 1044-1057.	3.1	16
65	Technological features of Saccharomyces cerevisiae var. boulardii for potential probiotic wheat beer development. LWT - Food Science and Technology, 2021, 135, 110233.	5.2	16
66	A critical view on the technology readiness level (TRL) of microbial plastics biodegradation. World Journal of Microbiology and Biotechnology, 2021, 37, 116.	3.6	16
67	Removal of polymeric filter cake in petroleum wells: A study of commercial amylase stability. Journal of Petroleum Science and Engineering, 2007, 59, 263-270.	4.2	15
68	Development of an amperometric biosensor for phenol detection. Environmental Technology (United) Tj ETQq0	0 0 rgBT /0 2.2	Dverlock 10 T
69	Process strategies to improve biocatalytic depolymerization of post-consumer PET packages in bioreactors, and investigation on consumables cost reduction. Bioprocess and Biosystems Engineering, 2021, 44, 507-516.	3.4	15
70	Enzyme-Enhanced Extraction of Phenolic Compounds and Proteins from Flaxseed Meal. ISRN Biotechnology, 2013, 2013, 1-6.	1.9	15

71	Electrical stimulation of saccharomyces cerevisiae cultures. Brazilian Journal of Microbiology, 2004, 35, 97-103.	2.0	14

Assessment of the impact of salinity and irradiance on the combined carbon dioxide sequestration and carotenoids production by <i>Dunaliella salina</i>: A mathematical model. Biotechnology and 3.3 14 Bioengineering, 2009, 102, 425-435.

#	Article	IF	CITATIONS
73	Kinetic Modeling of the Post-consumer Poly(Ethylene Terephthalate) Hydrolysis Catalyzed by Cutinase from Humicola insolens. Journal of Polymers and the Environment, 2022, 30, 1627-1637.	5.0	14
74	State observers for a biological wastewater nitrogen removal process in a sequential batch reactor. Bioresource Technology, 2001, 79, 1-14.	9.6	13
75	Influence of C/N ratio on autotrophic biomass development in a sequencing batch reactor. Biochemical Engineering Journal, 2004, 21, 131-139.	3.6	13
76	Chemoâ€enzymatic depolymerization of industrial and assorted postâ€consumer poly(ethylene) Tj ETQq0 0 0 r Technology and Biotechnology, 2021, 96, 3237-3244.	gBT /Over 3.2	lock 10 Tf 50 (13
77	Attachment/detachment of Saccharomyces cerevisiae on plasma deposited organosilicon thin films. European Physical Journal D, 2006, 56, B1256-B1262.	0.4	12
78	Study of saline wastewater influence on activated sludge flocs through automated image analysis. Journal of Chemical Technology and Biotechnology, 2009, 84, 554-560.	3.2	12
79	Factors influencing crude oil biodegradation by Yarrowia lipolytica. Brazilian Archives of Biology and Technology, 2012, 55, 785-791.	0.5	12
80	Low ost medium for 1,3â€propanediol production from crude glycerol by <i>Clostridium butyricum</i> . Biofuels, Bioproducts and Biorefining, 2020, 14, 1125-1134.	3.7	12
81	Recovery of Saponins from Jua (<i>Ziziphus joazeiro</i>) by Micellar Extraction and Cloud Point Preconcentration. Journal of Surfactants and Detergents, 2014, 17, 553-561.	2.1	11
82	An age-structured population balance model for microbial dynamics. Brazilian Journal of Chemical Engineering, 2003, 20, 1-6.	1.3	10
83	Obtenção de extratos de guaranÃ; ricos em cafeÃna por processo enzimÃ;tico e adsorção de taninos. Brazilian Journal of Food Technology, 2012, 15, 261-270.	0.8	9
84	Biocatalytic esterification of fatty acids using a low-cost fermented solid from solid-state fermentation with Yarrowia lipolytica. 3 Biotech, 2019, 9, 38.	2.2	9
85	Insights into media supplementation in solid-state fermentation of soybean hulls by Yarrowia lipolytica: Impact on lipase production in tray and insulated packed-bed bioreactors. Biochemical Engineering Journal, 2021, 166, 107866.	3.6	9
86	Experimental and mathematical modeling approaches for biocatalytic post-consumer poly(ethylene) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf !
87	Two-waste culture medium to produce 1,3-propanediol through a wild Clostridium butyricum strain. Fuel, 2022, 322, 124202.	6.4	9
88	Enzymatic Reactions in Near Critical CO2: The Effect of Pressure on Phenol Removal by Tyrosinase. International Journal of Molecular Sciences, 2009, 10, 5217-5223.	4.1	8
89	An ethanol-based process to simultaneously extract and fractionate carotenoids from Mauritia flexuosa L. Pulp. Revista Brasileira De Fruticultura, 2010, 32, 657-663.	0.5	8
90	Yarrowia lipolytica Adhesion and Immobilization onto Residual Plastics. Polymers, 2020, 12, 649.	4.5	8

#	Article	IF	CITATIONS
91	A Temporal Evolution Perspective of Lipase Production by Yarrowia lipolytica in Solid-State Fermentation. Processes, 2022, 10, 381.	2.8	8

Application of foam column as green technology for concentration of saponins from sisal (Agave) Tj ETQq0 0 0 rgBI. Overlock 10 Tf 50

93	Influence of Betaine- and Choline-based Eutectic Solvents on Lipase Activity. Current Biochemical Engineering, 2019, 5, 57-68.	1.3	7
94	Analysis of the effects of hyperbaric gases on S. cerevisiae cell cycle through a morphological approach. Process Biochemistry, 2007, 42, 1378-1383.	3.7	6
95	Potential method to improve the treatment efficiency of persistent contaminants in industrial wastewater. Journal of Hazardous Materials, 2008, 150, 438-445.	12.4	6
96	Image analysis application for the study of activated sludge floc size during the treatment of synthetic and real fishery wastewaters. Environmental Science and Pollution Research, 2011, 18, 1390-1397.	5.3	6
97	Investigation of mitochondrial protein expression profiles of Yarrowia lipolytica in response to citric acid production. Bioprocess and Biosystems Engineering, 2020, 43, 1703-1715.	3.4	6
98	Raw data pre-processing in the protozoa and metazoa identification by image analysis and multivariate statistical techniques. Journal of Chemometrics, 2007, 21, 156-164.	1.3	5
99	Optimization of laccase catalyzed degradation of reactive textile dyes in supercritical carbon dioxide medium by response surface methodology. Reaction Kinetics, Mechanisms and Catalysis, 2010, 99, 311.	1.7	5
100	Optimización de la Concentración de L-CisteÃna para la producción de 1,3-Propanodiol por una vÃa Biotecnológica. Informacion Tecnologica (discontinued), 2013, 24, 43-50.	0.3	5
101	Construction of wild-type Yarrowia lipolytica IMUFRJ 50682 auxotrophic mutants using dual CRISPR/Cas9 strategy for novel biotechnological approaches. Enzyme and Microbial Technology, 2020, 140, 109621.	3.2	5
102	Assessment of yeast viability under hyperbaric conditions through a modeling approach. Journal of Chemical Technology and Biotechnology, 2005, 80, 872-877.	3.2	4
103	Characterization of Commercial Amylases for the Removal of Filter Cake on Petroleum Wells. Applied Biochemistry and Biotechnology, 2010, 161, 171-180.	2.9	4
104	Development of nutrient media to increase the accumulation of lipids without genetic modification of a lipogenic microorganism. RSC Advances, 2017, 7, 38149-38154.	3.6	4
105	Culture Miniaturization of Lipase Production by Yarrowia lipolytica. Current Biochemical Engineering, 2019, 5, 12-20.	1.3	4
106	Improved production of biocatalysts by Yarrowia lipolytica using natural sources of the biopolyesters cutin and suberin, and their application in hydrolysis of poly (ethylene terephthalate) (PET). Bioprocess and Biosystems Engineering, 2021, 44, 2277-2287.	3.4	4
107	Applicability of mesoporous silica type SBA-15 as feasible support for the immobilization of Yarrowia lipolytica lipase and Candida antarctica lipase B. Brazilian Journal of Chemical Engineering, 2022, 39, 1013-1021.	1.3	4
108	A new method to obtain β-glucan from Saccharomyces cerevisiae cells. Catalysis Science and Technology, 2011, 1, 1068.	4.1	3

#	Article	IF	CITATIONS
109	Expression of Pisum sativum defensin 1 (Psd1) in shaking flasks and bioreactor cultivations of recombinant Pichia pastoris at different pHs. Brazilian Journal of Chemical Engineering, 2004, 21, 155-164.	1.3	3
110	Morphological characterization of CupriavidusÂnecator DSM 545 flocs through image analysis. World Journal of Microbiology and Biotechnology, 2007, 23, 801-808.	3.6	2
111	Remoção de cor de efluentes têxteis com cogumelos Agaricus bispora. Acta Scientiarum - Technology, 2010, 32, .	0.4	1
112	Impact of the reg1 mutation glycocen accumulation and glucose consumption rates in Saccharomyces cerevisiae cells based on a macrokinetic model. Brazilian Journal of Chemical Engineering, 2003, 20, 241-250.	1.3	1
113	Development of Potentiometric Urea Biosensor based on Canavalia ensiformis Urease. , 0, , .		0
114	Enantioselective catalysis from Pseudomonas cepacia on the kinetic resolution by different reactors. , 0, , .		0
115	Butanol production by Clostridium pasteurianum NRRL-598 using corn steep liquor as nutrient source. Brazilian Journal of Development, 2020, 6, 45399-45404.	0.1	0