
Keizo Yukimitu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2784476/publications.pdf Version: 2024-02-01

KEIZO YUKIMITU

#	Article	IF	CITATIONS
1	Physico-chemical properties of MTA and a novel experimental cement. International Endodontic Journal, 2005, 38, 443-447.	5.0	124
2	Undoped and calcium doped borate glass system for thermoluminescent dosimeter. Journal of Non-Crystalline Solids, 2006, 352, 3608-3612.	3.1	88
3	Relation among optical, thermal and thermo-optical properties and niobium concentration in tellurite glasses. Journal of Non-Crystalline Solids, 2010, 356, 2146-2150.	3.1	32
4	Thermo-optical characterization of tellurite glasses by thermal lens, thermal relaxation calorimetry and interferometric methods. Journal of Non-Crystalline Solids, 2006, 352, 3603-3607.	3.1	30
5	On the efficient Te4+→Yb3+ cooperative energy transfer mechanism in tellurite glasses: A potential material for luminescent solar concentrators. Journal of Alloys and Compounds, 2019, 781, 1119-1126.	5.5	29
6	Spectroscopic properties of Nd3+-doped tungsten–tellurite glasses. Journal of Physics and Chemistry of Solids, 2016, 88, 54-59.	4.0	28
7	On observation of the downconversion mechanism in Er3+/Yb3+ co-doped tellurite glass using thermal and optical parameters. Journal of Luminescence, 2015, 157, 365-370.	3.1	27
8	DSC studies on crystallization mechanisms of tellurite glasses. Thermochimica Acta, 2005, 426, 157-161.	2.7	26
9	Setting time and thermal expansion of two endodontic cements. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2008, 106, e77-e79.	1.4	25
10	Influence of lattice modifier on the nonlinear refractive index of tellurite glass. Ceramics International, 2017, 43, 15201-15204.	4.8	24
11	High Nd ³⁺ →Yb ³⁺ energy transfer efficiency in tungstenâ€ŧellurite glass: A promising converter for solar cells. Journal of the American Ceramic Society, 2017, 100, 1956-1962.	3.8	23
12	The structure and optical dispersion of the refractive index of tellurite glass. Optical Materials, 2011, 33, 1569-1572.	3.6	21
13	Observation of a Te4+ center with broad red emission band and high fluorescence quantum efficiency in TeO2-Li2O glass. Journal of Luminescence, 2018, 198, 24-27.	3.1	21
14	Effects of the particle size and nucleation temperature on tellurite 20Li2O–80TeO2 glass crystallization. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 434, 13-18.	5.6	15
15	Characterization of Nd3+-doped Tellurite Glasses with Low OH Content. Materials Research, 2015, 18, 2-7.	1.3	15
16	Luminescence quantum efficiency at 1.5î¼m of Er3+-doped tellurite glass determined by thermal lens spectroscopy. Optical Materials, 2013, 35, 2400-2404.	3.6	13
17	Fourier transform-infrared photoacoustic spectroscopy applied in fish scales to access environmental integrity: A case study of Astyanax altiparanae species. Infrared Physics and Technology, 2015, 72, 84-89.	2.9	10
18	Structural Phase Transitions of PbZr0.52Ti0.48O3Ceramic: An Infrared Spectroscopy Study. Ferroelectrics, 2006, 337, 145-151.	0.6	9

Кеізо Үйкіміти

#	Article	IF	CITATIONS
19	Inversion in the temperature coefficient of the optical path length close to the glass transition temperature in tellurite glasses. Applied Physics Letters, 2009, 94, .	3.3	7
20	Structure and microstructure of PbTiO3 thin films obtained from hybrid chemical method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 346, 223-227.	5.6	6
21	Structural Phase Transition Studies on PMN-0.35PT using Infrared Spectroscopy. Ferroelectrics, 2008, 369, 35-42.	0.6	3
22	Thermally stimulated crystallization of (20â^'x)LiO2–80TeO2–xWO3 glass system. Journal of Solid State Chemistry, 2011, 184, 1216-1220.	2.9	3
23	Superconductors of the BPSCCO system obtained from rapid cooling process. Journal of Materials Science: Materials in Electronics, 2005, 16, 135-138.	2.2	1