Jin Niu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2784424/publications.pdf

Version: 2024-02-01

361045 344852 2,388 36 20 36 citations h-index g-index papers 42 42 42 2769 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Quenching as a Route to Defectâ€Rich Ruâ€Pyrochlore Electrocatalysts toward the Oxygen Evolution Reaction. Small Methods, 2022, 6, e2101156.	4.6	11
2	Multifunctional sulfate-assistant synthesis of seaweed-like N,S-doped carbons as high-performance anodes for K-ion capacitors. Journal of Materials Chemistry A, 2022, 10, 9612-9620.	5.2	21
3	A Highly Durable Rubberâ€Derived Lithiumâ€Conducting Elastomer for Lithium Metal Batteries. Advanced Science, 2022, 9, e2200553.	5.6	22
4	B, N stabilization effect on multicavity carbon microspheres for boosting durable and fast potassium-ion storage. Journal of Colloid and Interface Science, 2022, 620, 24-34.	5.0	13
5	Stable and conductive carbon networks enabling high-performance silicon anodes for lithium-ion batteries. Cell Reports Physical Science, 2022, 3, 100862.	2.8	9
6	Potassium oxysalt-assistant strategy towards heteroatom-doped porous carbon electrodes for high-performance Na-ion capacitors. Journal of Power Sources, 2022, 541, 231688.	4.0	5
7	Biomass-derived carbon prepared through a quadruple-functional-salt approach for application in K-ion capacitors. Chemical Engineering Journal, 2022, 449, 137561.	6.6	15
8	Porous microtubes of nickel-cobalt double oxides as non-enzymatic hydrogen peroxide sensors. Chinese Chemical Letters, 2021, 32, 1181-1185.	4.8	12
9	Rational design of viologen redox additives for high-performance supercapacitors with organic electrolytes. Science China Materials, 2021, 64, 329-338.	3.5	16
10	Promotion of hydrogen evolution catalysis by ordered hierarchically porous electrodes. Catalysis Science and Technology, 2021, 11, 2997-3001.	2.1	8
11	Biomass-Derived Ternary-Doped Porous Carbon Electrodes for Li-lon Capacitors: Rational Preparation and Energy-Storage Mechanism Study. Journal of the Electrochemical Society, 2021, 168, 040521.	1.3	4
12	Gelatinâ€Derived 1D Carbon Nanofiber Architecture with Simultaneous Decoration of Single Feâ°N _{<i>x</i>} Sites and Fe/Fe ₃ C Nanoparticles for Efficient Oxygen Reduction. Chemistry - A European Journal, 2021, 27, 10987-10997.	1.7	8
13	Gelatin-derived carbon: Carbonization mechanism and application in K-ion storage. Carbon, 2021, 178, 775-782.	5.4	35
14	Co-activation Pore Engineering of Polyphthalocyanine-Derived Carbon Nanosheets for Supercapacitors in Organic Electrolytes. ACS Applied Energy Materials, 2021, 4, 7751-7758.	2.5	9
15	Intermetallic FePt@PtBi Core–Shell Nanoparticles for Oxygen Reduction Electrocatalysis. Angewandte Chemie, 2021, 133, 22070-22075.	1.6	43
16	Intermetallic FePt@PtBi Core–Shell Nanoparticles for Oxygen Reduction Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 21899-21904.	7.2	66
17	Sustainable Synthesis of Biomass-Derived Carbon Electrodes with Hybrid Energy-Storage Behaviors for Use in High-Performance Na-Ion Capacitors. ACS Applied Energy Materials, 2020, 3, 2478-2489.	2.5	33
18	Heteroatom-doped carbon networks enabling robust and flexible silicon anodes for high energy Li-ion batteries. Journal of Materials Chemistry A, 2020, 8, 18338-18347.	5.2	47

#	Article	IF	Citations
19	Phase Segregated Pt–SnO ₂ /C Nanohybrids for Highly Efficient Oxygen Reduction Electrocatalysis. Small, 2020, 16, e2005048.	5.2	32
20	Micropore-confined amorphous SnO ₂ subnanoclusters as robust anode materials for Na-ion capacitors. Journal of Materials Chemistry A, 2019, 7, 21711-21721.	5.2	32
21	Porous Carbons Derived from Collagenâ€Enriched Biomass: Tailored Design, Synthesis, and Application in Electrochemical Energy Storage and Conversion. Advanced Functional Materials, 2019, 29, 1905095.	7.8	94
22	Collagenâ€Derived Porous Carbons: Porous Carbons Derived from Collagenâ€Enriched Biomass: Tailored Design, Synthesis, and Application in Electrochemical Energy Storage and Conversion (Adv. Funct.) Tj ETQq0 0 (O rg & ₹/Ov	erlaæk 10 Tf 5
23	A facile and versatile strategy towards high-performance Si anodes for Li-ion capacitors: Concomitant conductive network construction and dual-interfacial engineering. Nano Energy, 2019, 63, 103824.	8.2	94
24	Porous carbons with tailored heteroatom doping and well-defined porosity as high-performance electrodes for robust Na-ion capacitors. Journal of Power Sources, 2019, 414, 68-75.	4.0	45
25	Porous carbon electrodes with battery-capacitive storage features for high performance Li-ion capacitors. Energy Storage Materials, 2018, 12, 145-152.	9.5	174
26	Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors. Applied Surface Science, 2018, 427, 807-813.	3.1	167
27	Synchronously boosting gravimetric and volumetric performance: Biomass-derived ternary-doped microporous carbon nanosheet electrodes for supercapacitors. Carbon, 2018, 140, 664-672.	5.4	101
28	In Situ-Generated Volatile Precursor for CVD Growth of a Semimetallic 2D Dichalcogenide. ACS Applied Materials & Dichalcogenid	4.0	23
29	Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy, 2018, 51, 366-372.	8.2	289
30	Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy, 2017, 36, 322-330.	8.2	469
31	Nitrogen and oxygen co-doped carbon networks with a mesopore-dominant hierarchical porosity for high energy and power density supercapacitors. Electrochimica Acta, 2017, 238, 310-318.	2.6	139
32	Tremella-like N,O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors. Nano Energy, 2017, 41, 285-292.	8.2	149
33	Mesopore- and Macropore-Dominant Nitrogen-Doped Hierarchically Porous Carbons for High-Energy and Ultrafast Supercapacitors in Non-Aqueous Electrolytes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42797-42805.	4.0	92
34	Direct amination of Si nanoparticles for the preparation of Si@ultrathin SiO _x @graphene nanosheets as high performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 19892-19900.	5.2	76
35	Towards Si@SiO ₂ coreâ€"shell, yolkâ€"shell, and SiO ₂ hollow structures from Si nanoparticles through a self-templated etchingâ€"deposition process. RSC Advances, 2014, 4, 29435-29438.	1.7	8
36	Can closed shell graphitic materials be exfoliated? Defect induced porphyra-like graphene from the cooperation of activation and oxidation. Journal of Materials Chemistry A, 2013, 1, 14103.	5.2	23